Tag: memory

History of the Modern Python Dictionary – by Raymond Hattinger

History of the Modern Python Dictionary – by Raymond Hattinger

Raymond Hattinger is one of the core Python developers whose talks I’ve featured on my blog before. And rightfully so, as Raymond’s presentations are unarguably entertaining and deeply insightful from an technical perspective.

In this recorded talk at the 2016 Annual Holiday Party for Python Devs in San Fransisco Bay Area, Raymond walks us through the history and development of dictionaries and hash tables uses example code in Python.

Python’s dictionaries are stunningly good. Over the years, many great ideas have combined together to produce the modern implementation in Python 3.6. This fun talk is given by Raymond Hettinger, the Python core developer responsible for the set implementation and who designed the compact-and-ordered dict implemented in CPython for Python 3.6 and in PyPy for Python 2.7. He will use pictures and little bits of pure python code to explain all of the key ideas and how they evolved over time. He will also include newer features such as key-sharing, compaction, and versioning. This talk is important because it is the only public discussion of the state of the art as of Python 3.6. Even experienced Python users are unlikely to know the most recent innovations.

This talk is for all Python programmers. It is designed to be fully understandable for a beginner (it starts from first principles) but to have new information even for Python experts (how key-sharing works, how the compact-ordered patch works, how dict versioning works). At the end of this talk, you can confidently say that you know how modern Python dictionaries work and what it means for your code.

https://www.youtube.com/watch?v=p33CVV29OG8
Need to save R’s lm() or glm() models? Trim the fat!

Need to save R’s lm() or glm() models? Trim the fat!

I was training a predictive model for work for use in a Shiny App. However, as the training set was quite large (700k+ obs.), the model object to save was also quite large in size (500mb). This slows down your operation significantly!

Basically, all you really need are the coefficients (and a link function, in case of glm()). However, I can imagine that you are not eager to write new custom predictions functions, but that you would rather want to rely on R’s predict.lm and predict.glm. Hence, you’ll need to save some more object information.

Via Google I came to this blog, which provides this great custom R function (below) to decrease the object size of trained generalized linear models considerably! It retains only those object data that are necessary to make R’s predict functions work.

My saved linear model went from taking up half a GB to only 27kb! That’s a 99.995% reduction!

strip_glm = function(cm) {
  cm$y = c()
  cm$model = c()
  
  cm$residuals = c()
  cm$fitted.values = c()
  cm$effects = c()
  cm$qr$qr = c()  
  cm$linear.predictors = c()
  cm$weights = c()
  cm$prior.weights = c()
  cm$data = c()
  
  
  cm$family$variance = c()
  cm$family$dev.resids = c()
  cm$family$aic = c()
  cm$family$validmu = c()
  cm$family$simulate = c()
  attr(cm$terms,".Environment") = c()
  attr(cm$formula,".Environment") = c()
  
  cm
}