Tag: AI

An ABC of Artificial Intelligence Concepts

An ABC of Artificial Intelligence Concepts

Yet another great resource by one of the teams at Google in collaboration with Oxford:

An ABC of Artificial Intelligence-related concepts!

The G is for GANs: Generative Adverserial Networks.

Want to know what GANs are all about?

Just read along with Google’s laymen explanation! Here’s an excerpt:

The P is for Predictions.

Currently the ABC is only available in English, but other language translations come available soon.

Check it out yourself!

PyBoy: A Python GameBoy Emulator

PyBoy: A Python GameBoy Emulator

If you are looking for a project to build a bot or AI application, look no further.

Enter the stage, PyBoy, a Nintendo Game Boy (DMG-01 [1989]) written in Python 2.7. The implementation runs in almost pure Python, but with dependencies for drawing graphics and getting user interactions through SDL2 and NumPy.

PyBoy is great for your AI robot projects as it is loadable as an object in Python. This means, it can be initialized from another script, and be controlled and probed by the script. You can even use multiple emulators at the same time, just instantiate the class multiple times.

The imagery suggests you can play anything from classic Super Mario to Pokemon. I suggest you start with the github, background report and PyBoy documentation right away.

Go catch ’em all!

Or get a bot to catch ’em all for you!

GitHub - Baekalfen/PyBoy: Game Boy emulator written in Python
AutoML-Zero: Evolving Machine Learning Algorithms From Scratch

AutoML-Zero: Evolving Machine Learning Algorithms From Scratch

Google Brain researchers published this amazing paper, with accompanying GIF where they show the true power of AutoML.

AutoML stands for automated machine learning, and basically refers to an algorithm autonomously building the best machine learning model for a given problem.

This task of selecting the best ML model is difficult as it is. There are many different ML algorithms to choose from, and each of these has many different settings ([hyper]parameters) you can change to optimalize the model’s predictions.

For instance, let’s look at one specific ML algorithm: the neural network. Not only can we try out millions of different neural network architectures (ways in which the nodes and lyers of a network are connected), but each of these we can test with different loss functions, learning rates, dropout rates, et cetera. And this is only one algorithm!

In their new paper, the Google Brain scholars display how they managed to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks. Using evolutionary principles, they have developed an AutoML framework that tailors its own algorithms and architectures to best fit the data and problem at hand.

This is AI research at its finest, and the results are truly remarkable!

GIF for the interpretation of the best evolved algorithm

You can read the full paper open access here: https://arxiv.org/abs/2003.03384 (quick download link)

The original code is posted here on github: github.com/google-research/google-research/tree/master/automl_zero#automl-zero

GIF for the experiment progress
Building a realistic Reddit AI that get upvoted in Python

Building a realistic Reddit AI that get upvoted in Python

Sometimes I find these AI / programming hobby projects that I just wished I had thought of…

Will Stedden combined OpenAI’s GPT-2 deep learning text generation model with another deep-learning language model by Google called BERT (Bidirectional Encoder Representations from Transformers) and created an elaborate architecture that had one purpose: posting the best replies on Reddit.

The architecture is shown at the end of this post — copied from Will’s original blog here. Moreover, you can read this post for details regarding the construction of the system. But let me see whether I can explain you what it does in simple language.

The below is what a Reddit comment and reply thread looks like. We have str8cokane making a comment to an original post (not in the picture), and then tupperware-party making a reply to that comment, followed by another reply by str8cokane. Basically, Will wanted to create an AI/bot that could write replies like tupperware-party that real people like str8cokane would not be able to distinguish from “real-people” replies.

Note that with 4 points, str8cokane‘s original comments was “liked” more than tupperware-party‘s reply and str8cokane‘s next reply, which were only upvoted 2 and 1 times respectively.

gpt2-bert on China
Example reddit comment and replies (via bonkerfield.org/)

So here’s what the final architecture looks like, and my attempt to explain it to you.

  1. Basically, we start in the upper left corner, where Will uses a database (i.e. corpus) of Reddit comments and replies to fine-tune a standard, pretrained GPT-2 model to get it to be good at generating (red: “fake”) realistic Reddit replies.
  2. Next, in the upper middle section, these fake replies are piped into a standard, pretrained BERT model, along with the original, real Reddit comments and replies. This way the BERT model sees both real and fake comments and replies. Now, our goal is to make replies that are undistinguishable from real replies. Hence, this is the task the BERT model gets. And we keep fine-tuning the original GPT-2 generator until the BERT discriminator that follows is no longer able to distinguish fake from real replies. Then the generator is “fooling” the discriminator, and we know we are generating fake replies that look like real ones!
    You can find more information about such generative adversarial networks here.
  3. Next, in the top right corner, we fine-tune another BERT model. This time we give it the original Reddit comments and replies along with the amount of times they were upvoted (i.e. sort of like likes on facebook/twitter). Basically, we train a BERT model to predict for a given reply, how much likes it is going to get.
  4. Finally, we can go to production in the lower lane. We give a real-life comment to the GPT-2 generator we trained in the upper left corner, which produces several fake replies for us. These candidates we run through the BERT discriminator we trained in the upper middle section, which determined which of the fake replies we generated look most real. Those fake but realistic replies are then input into our trained BERT model of the top right corner, which predicts for every fake but realistic reply the amount of likes/upvotes it is going to get. Finally, we pick and reply with the fake but realistic reply that is predicted to get the most upvotes!
What Will’s final architecture, combining GPT-2 and BERT, looked like (via bonkerfield.org)

The results are astonishing! Will’s bot sounds like a real youngster internet troll! Do have a look at the original blog, but here are some examples. Note that tupperware-party — the Reddit user from the above example — is actually Will’s AI.

COMMENT: 'Dune’s fandom is old and intense, and a rich thread in the cultural fabric of the internet generation' BOT_REPLY:'Dune’s fandom is overgrown, underfunded, and in many ways, a poor fit for the new, faster internet generation.'
bot responds to specific numerical bullet point in source comment

Will ends his blog with a link to the tutorial if you want to build such a bot yourself. Have a try!

Moreover, he also notes the ethical concerns:

I know there are definitely some ethical considerations when creating something like this. The reason I’m presenting it is because I actually think it is better for more people to know about and be able to grapple with this kind of technology. If just a few people know about the capacity of these machines, then it is more likely that those small groups of people can abuse their advantage.

I also think that this technology is going to change the way we think about what’s important about being human. After all, if a computer can effectively automate the paper-pushing jobs we’ve constructed and all the bullshit we create on the internet to distract us, then maybe it’ll be time for us to move on to something more meaningful.

If you think what I’ve done is a problem feel free to email me , or publically shame me on Twitter.

Will Stedden via bonkerfield.org/2020/02/combining-gpt-2-and-bert/

Finland’s free online AI crash course

Finland’s free online AI crash course

Finland developed a crash course on AI to educate its citizens. The course was arguably a great local success, with over 50 thousand Fins taking the course (1% of the population).

Now, as a gift to the European Union, Finland has opened up the course for the rest of Europe and the world to enjoy.

All pictures are screenshots taken from the website

The course is even being translated into several local languages. At the time of writing, five Northern European languages are already supported, but additional translation efforts are still in progress.

Elements of AI takes six weeks and functions as a crash course and beginner introduction to the field of AI:

3D visual representations of common neural network architectures

3D visual representations of common neural network architectures

Came across this awesome Youtube video that blew my mind. Definitely a handy resource if you want to explain the inner workings of neural networks. Have a look!

Reminded me of my other go-to resource when it comes to explaining neural nets, the playlists by 3Blue1Brown:

I’ll surely add these to the other neural network resources I’ve written about on my blog: