Tag: framework

Awesome R Shiny Resources & Extensions

Awesome R Shiny Resources & Extensions

Rob Gilmore curates a github repo listing resources for working with Shiny, the R web framework and dashboarding tool.

Nan Xiao curates a second repository, listing awesome R packages offer that extensions to Shiny, like extended UI or server components.

They should be your go-to resources when looking for anything Shiny!

Shiny Resources

Extensions

Tutorial: Demystifying Deep Learning for Data Scientists

Tutorial: Demystifying Deep Learning for Data Scientists

In this great tutorial for PyCon 2020, Eric Ma proposes a very simple framework for machine learning, consisting of only three elements:

  1. Model
  2. Loss function
  3. Optimizer

By adjusting the three elements in this simple framework, you can build any type of machine learning program.

In the tutorial, Eric shows you how to implement this same framework in Python (using jax) and implement linear regression, logistic regression, and artificial neural networks all in the same way (using gradient descent).

I can’t even begin to explain it as well as Eric does himself, so I highly recommend you watch and code along with the Youtube tutorial (~1 hour):

If you want to code along, here’s the github repository: github.com/ericmjl/dl-workshop

Have you ever wondered what goes on behind the scenes of a deep learning framework? Or what is going on behind that pre-trained model that you took from Kaggle? Then this tutorial is for you! In this tutorial, we will demystify the internals of deep learning frameworks – in the process equipping us with foundational knowledge that lets us understand what is going on when we train and fit a deep learning model. By learning the foundations without a deep learning framework as a pedagogical crutch, you will walk away with foundational knowledge that will give you the confidence to implement any model you want in any framework you choose.

https://www.youtube.com/watch?v=gGu3pPC_fBM
Tensorflow for R Gallery

Tensorflow for R Gallery

Tensorflow is a open-source machine learning (ML) framework. It’s primarily used to build neural networks, and thus very often used to conduct so-called deep learning through multi-layered neural nets. 

Although there are other ML frameworks — such as Caffe or Torch — Tensorflow is particularly famous because it was developed by researchers of Google’s Brain Lab. There are widespread debates on which framework is best, nonetheless, Tensorflow does a pretty good job on marketing itself. 

Google search engine searches on Tensorflow in comparison to searches on Machine learing and Deep learning

I primarily work in the programming language R, and have written before about how to start with deep learning in R using Keras — an user-friendly API built on top of, among others, Tensorflow. Now, it has become even easier to learn how to implement the power of Tensorflow in R, for RStudio has compiled a gallery of featured posts on Tensorflow implementations in R. It features a variety of applications related to collaborative filtering, image recognition, audio classification, times series forecasting, and fraud detection, all using Keras and TensorFlow. I highly recommend you check it out if you want to learn more about deep learning in R.