The Institute for Ethical Machine Learning compiled this amazing curated list of open source libraries that will help you deploy, monitor, version, scale, and secure your production machine learning.
The Institute for Ethical Machine Learning is a think-tank that brings together with technology leaders, policymakers & academics to develop standards for ML.
The Open Source Society University offers a complete education in computer science using online materials.
They offer a proper introduction to the fundamental concepts for all computing disciplines. Evyerthing form algorithms, logic, and machine learning, up to databases, full stack web development, and graphics is covered. Moreover, you will acquire skills in a variety of languages, including Python, Java, C, C++, Scala, JavaScript, and many more.
According to their GitHub page, the curriculum is suited for people with the discipline, will, and good habits to obtain this education largely on their own, but who’d still like support from a worldwide community of fellow learners.
Curriculum
Intro CS: for students to try out CS and see if it’s right for them
Core CS: corresponds roughly to the first three years of a computer science curriculum, taking classes that all majors would be required to take
Advanced CS: corresponds roughly to the final year of a computer science curriculum, taking electives according to the student’s interests
Final Project: a project for students to validate, consolidate, and display their knowledge, to be evaluated by their peers worldwide
Pro CS: graduate-level specializations students can elect to take after completing the above curriculum if they want to maximize their chances of getting a good job
It is possible to finish Core CS within about 2 years if you plan carefully and devote roughly 18-22 hours/week to your studies. Courses in Core CS should be taken linearly if possible, but since a perfectly linear progression is rarely possible, each class’s prerequisites are specified so that you can design a logical but non-linear progression based on the class schedules and your own life plans.
Over the last months I’ve been working my way through Project Euler in my spare time. I wanted to learn Python programming, and what better way than solving mini-problems and -projects?!
Well, Project Euler got a ton of these, listed in increasing order of difficulty. It starts out simple: to solve the first problem you need to write a program to identify multiples of 3 and 5. Next, in problem two, you are asked to sum the first thousand even Fibonacci numbers. Each problem, the task at hand gets slighly more difficult…
For me, Project Euler combines math, programming, and stats in a way that really keeps me motivated to continue and learn new concepts and programming / problem-solving approaches.
However, at problem 31, I really got stuck. For several hours, I struggled to solve it in a satisfactory fashion, even though most other problems only take 5-90 minutes.
After hours of struggling, I pretty much gave up, and googled some potential solutions. Aparently, the way to solve problem 31, is to take a so-called dynamic programming approach.
Dynamic programmingย is both aย mathematical optimizationย method and a computer programming method. The method was developed byย Richard Bellmanย in the 1950s and has found applications in numerous fields, fromย aerospace engineeringย toย economics. In both contexts it refers to simplifying a complicated problem by breaking it down into simpler sub-problems in aย recursiveย manner. While some decision problems cannot be taken apart this way, decisions that span several points in time do often break apart recursively. Likewise, in computer science, if a problem can be solved optimally by breaking it into sub-problems and then recursively finding the optimal solutions to the sub-problems, then it is said to haveย optimal substructure.
Now, this sounded like something I’d like to learn more about! I was already quite familiar with recursive problems and solutions, but this dynamic programming sounded next-level.
So I googled and googled for tutorials and other resources, and I finally came across this free 2011 MIT course that I intend to view over the coming weeks.
There’s even a course website with additional materials and assignments (in Python).
For those less interested in (dynamic) programming but mostly in machine learning, there’s this other great MIT OpenCourseWare youtube playlist of their Artificial Intelligence course. I absolutely loved that course and I really powered through it in a matter of weeks (which is why I am already psyched about this new one). I learned so much new concepts, and I strongly recommend it. Unfortunately, the professor recently passed away.
Looking for a custom typeface to use in your data visualizations? Google Fonts is an awesome databank of nearly a thousands font families you can access, download, and use for free.
Katie Jolly wanted to surprise a friend with a nice geeky gift: a custom-made map cutout. Using R and some visual finetuning in Inkscape, she was able to made the below.
A detailed write-up of how Katie got to this product is posted here.
Basically, the R’s tigris package included all data on roads, and the ArcGIS Open Data Hub provided the neighborhood boundaries. Fortunately, the sf package is great for transforming and manipulating geospatial data, and includes some functions to retrieve a subset of roads based on their distance to a centroid. With this subset, Katie could then build these wonderful plots in no time with ggplot2.