Tag: free

Understanding Machine Learning (free e-book)

Understanding Machine Learning (free e-book)

Shai Shalev-Shwartz and Shai Ben-David of the Hebrew University of Jerusalem made their machine learning book free to download.

The book covers the basic foundations up to advanced theory and algorithms. I copied the table of contents below. It’s kind of math heavy, but well explained with visual examples and pseudo-code.

Moreover, the book contains multiple exercises for you to internalize the knowledge and skills.

As an added bonus, the professors teach a number of machine learning courses, the lecture slides and materials of which you can also access for free via the book’s website.

Machine learning is one of the fastest growing areas of computer science, with far-reaching applications. The aim of this textbook is to introduce machine learning, and the algorithmic paradigms it offers, in a principled way. The book provides a theoretical account of the fundamentals underlying machine learning and the mathematical derivations that transform these principles into practical algorithms. Following a presentation of the basics, the book covers a wide array of central topics unaddressed by previous textbooks. These include a discussion of the computational complexity of learning and the concepts of convexity and stability; important algorithmic paradigms including stochastic gradient descent, neural networks, and structured output learning; and emerging theoretical concepts such as the PAC-Bayes approach and compression-based bounds. Designed for advanced undergraduates or beginning graduates, the text makes the fundamentals and algorithms of machine learning accessible to students and non-expert readers in statistics, computer science, mathematics and engineering.

About the book

If you want to reward the professors for their efforts, please do buy a hardcopy version of book.

Table of contents

Part I: Foundations

  • A gentle start
  • A formal learning model
  • Learning via uniform convergence
  • The bias-complexity trade-off
  • The VC-dimension
  • Non-uniform learnability
  • The runtime of learning

Part II: From Theory to Algorithms

  • Linear predictors
  • Boosting
  • Model selection and validation
  • Convex learning problems
  • Regularization and stability
  • Stochastic gradient descent
  • Support vector machines
  • Kernel methods
  • Multiclass, ranking, and complex prediction problems
  • Decision trees
  • Nearest neighbor
  • Neural networks

Part III: Additional Learning Models

  • Online learning
  • Clustering
  • Dimensionality reduction
  • Generative models
  • Feature selection and generation

Part IV: Advanced Theory

  • Rademacher complexities
  • Covering numbers
  • Proof of the fundamental theorem of learning theory
  • Multiclass learnability
  • Compression bounds
  • PAC-Bayes

Appendices

  • Technical lemmas
  • Measure concentration
  • Linear algebra
A free, self-taught education in Computer Science!

A free, self-taught education in Computer Science!

The Open Source Society University offers a complete education in computer science using online materials.

They offer a proper introduction to the fundamental concepts for all computing disciplines. Evyerthing form algorithms, logic, and machine learning, up to databases, full stack web development, and graphics is covered. Moreover, you will acquire skills in a variety of languages, including Python, Java, C, C++, Scala, JavaScript, and many more.

According to their GitHub page, the curriculum is suited for people with the discipline, will, and good habits to obtain this education largely on their own, but who’d still like support from a worldwide community of fellow learners.

Curriculum

  • Intro CS: for students to try out CS and see if it’s right for them
  • Core CS: corresponds roughly to the first three years of a computer science curriculum, taking classes that all majors would be required to take
  • Advanced CS: corresponds roughly to the final year of a computer science curriculum, taking electives according to the student’s interests
  • Final Project: a project for students to validate, consolidate, and display their knowledge, to be evaluated by their peers worldwide
  • Pro CS: graduate-level specializations students can elect to take after completing the above curriculum if they want to maximize their chances of getting a good job

It is possible to finish Core CS within about 2 years if you plan carefully and devote roughly 18-22 hours/week to your studies. Courses in Core CS should be taken linearly if possible, but since a perfectly linear progression is rarely possible, each class’s prerequisites are specified so that you can design a logical but non-linear progression based on the class schedules and your own life plans.

Links to the contents

Links to the curriculum (v8.0.0)

Free Springer Books during COVID19

Free Springer Books during COVID19

Update: Unfortunately, Springer removed the free access to its books.

Book publisher Springer just released over 400 book titles that can be downloaded free of charge following the corona-virus outbreak.

Here’s the full overview: https://link.springer.com/search?facet-content-type=%22Book%22&package=mat-covid19_textbooks&facet-language=%22En%22&sortOrder=newestFirst&showAll=true

Most of these books will normally set you back about $50 to $150, so this is a great deal!

There are many titles on computer science, programming, business, psychology, and here are some specific titles that might interest my readership:

Note that I only got to page 8 of 21, so there are many more free interesting titles out there!

Join 343 other followers

Solutions to working with small sample sizes

Solutions to working with small sample sizes

Both in science and business, we often experience difficulties collecting enough data to test our hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs.

Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the questions we’re really interested in.

Several scholars teamed up and wrote this open access book: Small Sample Size Solutions.

This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample studies. Each chapter illustrates statistical methods that allow researchers and analysts to apply the optimal statistical model for their research question when the sample is too small.

This book will enable anyone working with data to test their hypotheses even when the statistical model required for answering their questions are too complex for the sample sizes they can collect. The covered statistical models range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R.

You can access the book for free here!

Google’s Dataset Search: Direct access to 25 million interesting datasets

Google’s Dataset Search: Direct access to 25 million interesting datasets

I used to keep a repository of links to interesting datasets to learn data science. However, that page I can retire, as Google has launched its new service Dataset Search.

The “world wide web” hosts millions of datasets, on nearly any topic you can think of. Google’s Dataset Search┬áhas indexed almost 25 million of these datasets, giving you a single entry point to search for datasets online. After a year of testing, Dataset Search is now officially out of beta.

After alpha testing, Dataset Search now includes filter based on the types of dataset that you want (e.g., tables, images, text), on whether the dataset is open source/access. For dataset on geographic area’s, you can see the map. The quality of dataset’s descriptions has improved greatly, and the tool now has a mobile version.

Anyone who publishes data can make their datasets discoverable in Dataset Search by describe the properties of their dataset using a special schema on their own web page.

CodeWars: Learn programming through test-driven development

CodeWars: Learn programming through test-driven development

As I wrote about Project Euler and CodingGame before, someone recommended me CodeWars. CodeWars offers free online learning exercises to develop your programming skills through fun daily challenges.

In line with Project Euler, you are tasked with solving increasingly complex programming challenges. At CodeWars, these little problems you need to solve with code are called kata.

Kata take a test-driven development approach: the programs you write need to pass the tests of the developer who made the kata in the first place. Only then are you awarded with honour and can you earn your ranks and progress to the more complex kata.

Sounds fun right? I’m definitely going to check this out, as they support a wide range of programming languages, each with many kata to solve!

Python, Ruby, C++, Java, JavaScript and many other main programming languages are already supported, but CodeWards is also still developing kata for more niche or upcoming languages like R, Lua, Kotlin, and Scala.