18 Pitfalls of Data Visualization

18 Pitfalls of Data Visualization

Maarten Lambrechts is a data journalist I closely follow online, with great delight. Recently, he shared on Twitter his slidedeck on the 18 most common data visualization pitfalls. You will probably already be familiar with most, but some (like #14) were new to me:

  1. Save pies for dessert
  2. Don’t cut bars
  3. Don’t cut time axes
  4. Label directly
  5. Use colors deliberately
  6. Avoid chart junk
  7. Scale circles by area
  8. Avoid double axes
  9. Correlation is no causality
  10. Don’t do 3D
  11. Sort on the data
  12. Tell the story
  13. 1 chart, 1 message
  14. Common scales on small mult’s
  15. #Endrainbow
  16. Normalise data on maps
  17. Sometimes best map is no map
  18. All maps lie

Even though most of these 18 rules below seem quite obvious, even the European Commissions seems to break them every now and then:

Can you spot what’s wrong with this graph?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s