Category: programming

Bayesian Statistics using R, Python, and Stan

Bayesian Statistics using R, Python, and Stan

For a year now, this course on Bayesian statistics has been on my to-do list. So without further ado, I decided to share it with you already.

Richard McElreath is an evolutionary ecologist who is famous in the stats community for his work on Bayesian statistics.

At the Max Planck Institute for Evolutionary Anthropology, Richard teaches Bayesian statistics, and he was kind enough to put his whole course on Statistical Rethinking: Bayesian statistics using R & Stan open access online.

You can find the video lectures here on Youtube, and the slides are linked to here:

Richard also wrote a book that accompanies this course:

For more information abou the book, click here.

For the Python version of the code examples, click here.

Handling and Converting Data Types in Python Pandas

Handling and Converting Data Types in Python Pandas

Data types are one of those things that you don’t tend to care about until you get an error or some unexpected results. It is also one of the first things you should check once you load a new data into pandas for further analysis.

Chris Moffit

In this short tutorial, Chris shows how to the pandas dtypes map to the numpy and base Python data types.

A screenshot of the data type mapping.

Moreover, Chris demonstrates how to handle and convert data types so you can speed up your data analysis. Both using custom functions and anonymous lambda functions.

A snapshot from the original blog.

A very handy guide indeed, after which you will be able to read in your datasets into Python in the right format from the get-go!

Using data type casting, lambda functions, and functional programming to read in data in Python. Via pbpython.com/pandas_dtypes.html

How most statistical tests are linear models

How most statistical tests are linear models

Jonas Kristoffer Lindeløv wrote a great visual explanation of how the most common statistical tests (t-test, ANOVA, ANCOVA, etc) are all linear models in the back-end.

Jonas’ original blog uses R programming to visually show how the tests work, what the linear models look like, and how different approaches result in the same statistics.

George Ho later remade a Python programming version of the same visual explanation.

If I was thought statistics and methodology this way, I sure would have struggled less! Have a look yourself: https://lindeloev.github.io/tests-as-linear/

The 10 Fundamental Concepts of JavaScript

The 10 Fundamental Concepts of JavaScript

Another pearl of a resource on Twitter is this thread by Madison on 10 of fundamentalal concepts of Javascript — and programming in general for that matter.

For your convience, I copied the links below. Just click them to browse to the resource and learn more about the concept

Click to learn more about each concept

  1. Variables & Scoping
  2. Data types
  3. Objects, Funtions & Arrays
  4. Document Object Model (DOM)
  5. Prototypes & this.
  6. Events
  7. Flow Control (specifically, for-loops)
  8. Security & (web) Accesibility
  9. Good coding practices (to which I’ve linked before)
  10. Async

This 10-step list was compiled as apart of this interesting podcast, which I recommend you listen to as well.

Want to learn more?

According to many, this is the best book to continue learning more about JavaScript.

There’s a (now classic) conference talk that comes with this book, which I can also recommend you watch:

Create a publication-ready correlation matrix, with significance levels, in R

Create a publication-ready correlation matrix, with significance levels, in R

In most (observational) research papers you read, you will probably run into a correlation matrix. Often it looks something like this:

FACTOR ANALYSIS

In Social Sciences, like Psychology, researchers like to denote the statistical significance levels of the correlation coefficients, often using asterisks (i.e., *). Then the table will look more like this:

Table 4 from Family moderators of relation between community ...

Regardless of my personal preferences and opinions, I had to make many of these tables for the scientific (non-)publications of my Ph.D..

I remember that, when I first started using R, I found it quite difficult to generate these correlation matrices automatically.

Yes, there is the cor function, but it does not include significance levels.

Then there the (in)famous Hmisc package, with its rcorr function. But this tool provides a whole new range of issues.

What’s this storage.mode, and what are we trying to coerce again?

Soon you figure out that Hmisc::rcorr only takes in matrices (thus with only numeric values). Hurray, now you can run a correlation analysis on your dataframe, you think…

Yet, the output is all but publication-ready!

You wanted one correlation matrix, but now you have two… Double the trouble?

To spare future scholars the struggle of the early day R programming, I would like to share my custom function correlation_matrix.

My correlation_matrix takes in a dataframe, selects only the numeric (and boolean/logical) columns, calculates the correlation coefficients and p-values, and outputs a fully formatted publication-ready correlation matrix!

You can specify many formatting options in correlation_matrix.

For instance, you can use only 2 decimals. You can focus on the lower triangle (as the lower and upper triangle values are identical). And you can drop the diagonal values:

Or maybe you are interested in a different type of correlation coefficients, and not so much in significance levels:

For other formatting options, do have a look at the source code below.

Now, to make matters even more easy, I wrote a second function (save_correlation_matrix) to directly save any created correlation matrices:

Once you open your new correlation matrix file in Excel, it is immediately ready to be copy-pasted into Word!

If you are looking for ways to visualize your correlations do have a look at the packages corrr and corrplot.

I hope my functions are of help to you!

Do reach out if you get to use them in any of your research papers!

I would be super interested and feel honored.

correlation_matrix

#' correlation_matrix
#' Creates a publication-ready / formatted correlation matrix, using `Hmisc::rcorr` in the backend.
#'
#' @param df dataframe; containing numeric and/or logical columns to calculate correlations for
#' @param type character; specifies the type of correlations to compute; gets passed to `Hmisc::rcorr`; options are `"pearson"` or `"spearman"`; defaults to `"pearson"`
#' @param digits integer/double; number of decimals to show in the correlation matrix; gets passed to `formatC`; defaults to `3`
#' @param decimal.mark character; which decimal.mark to use; gets passed to `formatC`; defaults to `.`
#' @param use character; which part of the correlation matrix to display; options are `"all"`, `"upper"`, `"lower"`; defaults to `"all"`
#' @param show_significance boolean; whether to add `*` to represent the significance levels for the correlations; defaults to `TRUE`
#' @param replace_diagonal boolean; whether to replace the correlations on the diagonal; defaults to `FALSE`
#' @param replacement character; what to replace the diagonal and/or upper/lower triangles with; defaults to `""` (empty string)
#'
#' @return a correlation matrix
#' @export
#'
#' @examples
#' `correlation_matrix(iris)`
#' `correlation_matrix(mtcars)`
correlation_matrix <- function(df, 
                               type = "pearson",
                               digits = 3, 
                               decimal.mark = ".",
                               use = "all", 
                               show_significance = TRUE, 
                               replace_diagonal = FALSE, 
                               replacement = ""){
  
  # check arguments
  stopifnot({
    is.numeric(digits)
    digits >= 0
    use %in% c("all", "upper", "lower")
    is.logical(replace_diagonal)
    is.logical(show_significance)
    is.character(replacement)
  })
  # we need the Hmisc package for this
  require(Hmisc)
  
  # retain only numeric and boolean columns
  isNumericOrBoolean = vapply(df, function(x) is.numeric(x) | is.logical(x), logical(1))
  if (sum(!isNumericOrBoolean) > 0) {
    cat('Dropping non-numeric/-boolean column(s):', paste(names(isNumericOrBoolean)[!isNumericOrBoolean], collapse = ', '), '\n\n')
  }
  df = df[isNumericOrBoolean]
  
  # transform input data frame to matrix
  x <- as.matrix(df)
  
  # run correlation analysis using Hmisc package
  correlation_matrix <- Hmisc::rcorr(x, type = type)
  R <- correlation_matrix$r # Matrix of correlation coeficients
  p <- correlation_matrix$P # Matrix of p-value 
  
  # transform correlations to specific character format
  Rformatted = formatC(R, format = 'f', digits = digits, decimal.mark = decimal.mark)
  
  # if there are any negative numbers, we want to put a space before the positives to align all
  if (sum(!is.na(R) & R < 0) > 0) {
    Rformatted = ifelse(!is.na(R) & R > 0, paste0(" ", Rformatted), Rformatted)
  }

  # add significance levels if desired
  if (show_significance) {
    # define notions for significance levels; spacing is important.
    stars <- ifelse(is.na(p), "", ifelse(p < .001, "***", ifelse(p < .01, "**", ifelse(p < .05, "*", ""))))
    Rformatted = paste0(Rformatted, stars)
  }
  
  # make all character strings equally long
  max_length = max(nchar(Rformatted))
  Rformatted = vapply(Rformatted, function(x) {
    current_length = nchar(x)
    difference = max_length - current_length
    return(paste0(x, paste(rep(" ", difference), collapse = ''), sep = ''))
  }, FUN.VALUE = character(1))
  
  # build a new matrix that includes the formatted correlations and their significance stars
  Rnew <- matrix(Rformatted, ncol = ncol(x))
  rownames(Rnew) <- colnames(Rnew) <- colnames(x)
  
  # replace undesired values
  if (use == 'upper') {
    Rnew[lower.tri(Rnew, diag = replace_diagonal)] <- replacement
  } else if (use == 'lower') {
    Rnew[upper.tri(Rnew, diag = replace_diagonal)] <- replacement
  } else if (replace_diagonal) {
    diag(Rnew) <- replacement
  }
  
  return(Rnew)
}

save_correlation_matrix

#' save_correlation_matrix
#' Creates and save to file a fully formatted correlation matrix, using `correlation_matrix` and `Hmisc::rcorr` in the backend
#' @param df dataframe; passed to `correlation_matrix`
#' @param filename either a character string naming a file or a connection open for writing. "" indicates output to the console; passed to `write.csv`
#' @param ... any other arguments passed to `correlation_matrix`
#'
#' @return NULL
#'
#' @examples
#' `save_correlation_matrix(df = iris, filename = 'iris-correlation-matrix.csv')`
#' `save_correlation_matrix(df = mtcars, filename = 'mtcars-correlation-matrix.csv', digits = 3, use = 'lower')`
save_correlation_matrix = function(df, filename, ...) {
  return(write.csv2(correlation_matrix(df, ...), file = filename))
}

Sign up to keep up to date on the latest R, Data Science & Tech content: