Category: reading

Book tip: On the Clock

Book tip: On the Clock

Suppose you operate a warehouse where workers work 11-hour shifts. In order to meet your productivity KPIs, a significant number of them need to take painkillers multiple times per shift. Do you…

  1. Decrease or change the KPI (goals)
  2. Make shifts shorter
  3. Increase the number or duration of breaks
  4. Increase the medical staff
  5. Install vending machines to dispense painkillers more efficiently

Nobody in their right mind would take option 5… Right?

Yet, this is precisely what Amazon did according to Emily Guendelsberger in her insanely interesting and relevant book “On the clock(note the paradoxal link to Amazon’s webshop here).

Emily went undercover as employee at several organizations to experience blue collar jobs first-hand. In her book, she discusses how tech and data have changed low-wage jobs in ways that are simply dehumanizing.

These days, with sensors, timers, and smart nudging, employees are constantly being monitored and continue working (hard), sometimes at the cost of their own health and well-being.

I really enjoyed the book, despite the harsh picture it sketches of low wage jobs and malicious working conditions these days. The book poses several dilemma’s and asks multiple reflective questions that made me re-evaluate and re-appreciate my own job. Truly an interesting read!

Some quotes from the book to get you excited:

“As more and more skill is stripped out of a job, the cost of turnover falls; eventually, training an ever-churning influx of new unskilled workers becomes less expensive than incentivizing people to stay by improving the experience of work or paying more.”

Emily Guendelsberger, On the Clock

“Q: Your customer-service representatives handle roughly sixty calls in an eighty-hour shift, with a half-hour lunch and two fifteen-minute breaks. By the end of the day, a problematic number of them are so exhausted by these interactions that their ability to focus, read basic conversational cues, and maintain a peppy demeanor is negatively affected. Do you:

A. Increase staffing so you can scale back the number of calls each rep takes per shift — clearly, workers are at their cognitive limits

B. Allow workers to take a few minutes to decompress after difficult calls

C. Increase the number or duration of breaks

D. Decrease the number of objectives workers have for each call so they aren’t as mentally and emotionally taxing

E. Install a program that badgers workers with corrective pop-ups telling them that they sound tired.

Seriously—what kind of fucking sociopath goes with E?”

Emily Guendelsberger, On the Clock
My copy of the book
(click picture to order your own via affiliate link)

Cover via Freepik

Free Springer Books during COVID19

Free Springer Books during COVID19

Update: Unfortunately, Springer removed the free access to its books.

Book publisher Springer just released over 400 book titles that can be downloaded free of charge following the corona-virus outbreak.

Here’s the full overview: https://link.springer.com/search?facet-content-type=%22Book%22&package=mat-covid19_textbooks&facet-language=%22En%22&sortOrder=newestFirst&showAll=true

Most of these books will normally set you back about $50 to $150, so this is a great deal!

There are many titles on computer science, programming, business, psychology, and here are some specific titles that might interest my readership:

Note that I only got to page 8 of 21, so there are many more free interesting titles out there!

Join 274 other followers

Solutions to working with small sample sizes

Solutions to working with small sample sizes

Both in science and business, we often experience difficulties collecting enough data to test our hypotheses, either because target groups are small or hard to access, or because data collection entails prohibitive costs.

Such obstacles may result in data sets that are too small for the complexity of the statistical model needed to answer the questions we’re really interested in.

Several scholars teamed up and wrote this open access book: Small Sample Size Solutions.

This unique book provides guidelines and tools for implementing solutions to issues that arise in small sample studies. Each chapter illustrates statistical methods that allow researchers and analysts to apply the optimal statistical model for their research question when the sample is too small.

This book will enable anyone working with data to test their hypotheses even when the statistical model required for answering their questions are too complex for the sample sizes they can collect. The covered statistical models range from the estimation of a population mean to models with latent variables and nested observations, and solutions include both classical and Bayesian methods. All proposed solutions are described in steps researchers can implement with their own data and are accompanied with annotated syntax in R.

You can access the book for free here!

A new blog post every Tuesday!

A new blog post every Tuesday!

Hi dear readers!

I’ve been blogging for just over three years now. Writing my first blogs in January 2017 in a small café in London out of pastime, I had never imagined that I would actually attract a readership. And while my blog grew in visitors and followers, it always remained just a hobby for me to summarize and post stuff I was reading or working on at the time.

Still, I want to make sure that you — my readership — get the most out of the time I invest in my blogs. Some blogs are more interesting than others, I am aware. However, I notice that it’s not only the content, but also the time and momentum of posting that draws in you readers.

Hence, I propose the following: Rather than erratically posting everything at the time of writing, I’m going to provide you with some regularity. As of today…

I will post a new blog every Tuesday, at 15:00 GMT+1

“Why that specific time?” I hear you asking. Well, it’s the perfect time as all my followers are still awake on the same day!

  • My Asian followers can read the blog just before or in bed,
  • My African and European readers can look forward to their commute home, and
  • My North- and South-American fans can enjoy it with their morning coffee!

Join 274 other followers

Over the course of last year, I posted nearly 100 blogs. If you do some quick maths, you will conclude that 1 post every Tuesday is a lot less.

And this is where you come in:

Please let me know at what time you would prefer to have me post a second blog every (other) week. You can do so in the comments, by sending me a direct message, or by reaching out to me on twitter or LinkedIn.

Image via uoe.co.uk/uoe-post-office-services

AI Book Review: You look like a thing and I love you

AI Book Review: You look like a thing and I love you

The following are my summary and take-aways from Janelle Shane’s 2019 book named You look like a thing and I love you. Most of the below are excerpts from Janelle’s book, combined, or rewritten by me. For the sake of copyright, just consider everything Janelle’s : )

Image result for things called ai janelle shane

AI weirdness

You look like a thing and I love you is about AI. More specifically, the book is about what AI can and can not do. And how and why AI often fails in miserably hilareous ways.

Janelle has spend her time foing fun experiments with AI. In this book, she shares those experiments along with many real life examples of AIs in practice. While explaining the technical details behind these AIs in an accesible though technically correct way, she informs the reader where, how, and why AIs fail.

Janelle took AIs out of their comfort zone and it produced some hilareously weird results. She proposes five principles of AI Weirdness:

  1. The danger of AI is not that it’s too smart, but that it’s not smart enough
  2. AI has the approximate brainpower of a worm
  3. AI does not really understand the problem you want it to solve
  4. But: AI will do exactly what you tell it to. Or at least it will try its best.
  5. And AI willt ake the path of the least resistance

Definitions: What is (not) AI?

If it seems like AI is everywhere, it’s partly because Artificial Intelligence means lots of things, depending on whether you’re reading science fiction or selling a new app or doing academic research.

To spot an AI in the wild, it’s important to know the difference between machine learning algorithms (what Janelle calls AI in her book) and traditional, rules-based programs.

To solve a problem with a rules-based program, you have to know every step required to complete the program’s task and how to describe each one of those steps. But a machine learning algorithm figures out the rules for itself via trail and error, gauging its success on goals the programmer has specified. As the AI tries to reach this goal, it can discover rules and correlations that the programmer didn’t even know existed. This is what makes AIs attractive problem solvers and is particularly handy if the rules are really complicated or just plain mysterious.

Sometimes an AI’s brilliant problem-solving rules actually rely on mistaken assumptions. Rules that served it well in training but fail miserably when it encountered the real world. While training errors are common in complex AIs, the consequences of these mistakes can be serious.

It’s often not easy to tell when AIs make mistakes. Since we don’t write the rules, they come up with their own, and they don’t write them down or explain them the way a human would.

The difference between succesful AI problem solving and failure usually has a lot to do with the suitability of the task for an AI solution. And there are plenty of tasks for which AI solutions are more efficient than human solutions. But there are also plenty of cases where things go miserably wrong.

Janelle proposes four signs of “AI Doom”, contexts where machine learning will not produce the desired results:

  1. The problem is too hard, broad, or complex
  2. The problem is not what we thought it was
  3. There are sneaky shortcuts to solving the problem
  4. The AI tried to solve the problem learning from flawed data

Programming an AI is almost more like teaching a child than programming a computer.

Explaining how AI works

In her book, Janelle takes us through many example problems which she or others tried to solve using AIs. These example problems are increasingly hilareous, but I assure you that they are technically and didactically sound:

  • Playing tic-tac-toe
  • Managing a cockroach farm
  • Riding a bicycle
  • Rating sandwich deliciousness
  • Tossing a sandwich into a wall
  • Guiding people through a hallway
  • Answering questions regarding photo’s
  • Categorizing doodles
  • Categorizing fish
  • Tossing pancakes
  • Autonomous walking
  • Autonomous driving
  • Playing Pacman

The amazing thing is these ridiculous example problems actually serve a purpose. They are used to explain different algorithms and their applications, strengths, and limitations! Janelle covers a wide variety of algorithms in such a way that anyone new to machine learning would understand, while people with some experience will still be amused.

Janelle talks about artificial neural networks, random forests, and markov chains. Moreover, she explains how activation functions, recurrancy and long short-term memory, evolutionary algorithms and gradient descent work. And all in understandable though technically correct language.

Janelle herself seems particularly fond of generative algorithms. She’s elaborates on having deployed recurrent neural nets, generative adversial networks, and markov chains for a wide variety of generative tasks. In the book, Jabekke explains what went well and went wrong when coming up with new and original…

  • pick-up lines
  • knock-knock jokes
  • names for species of birds
  • perfumes names
  • ice-cream flavors
  • cooking recipes
  • dream descriptions
  • horse drawings
  • Harry Potter scripts
  • cat names
  • Halloween costumes
  • elementary school blueprints
  • names for Benedict Cumberbatch
  • Dungeons and Dragons spells
  • pie recipes

Where does AI fail?

Janelle’s book is lingered with examples of failing AI. As a matter of fact, the whole book seems like an ode to how machine learning can and will inevitably fail. Particularly in the latter chapters, Janelle covers many limitations of and issues with AI in much detail:

  • class imbalance
  • overfitting
  • unrealistic simulation conditions
  • data quality issues
  • self-fullfilling prophecies
  • undesirable reward function optimization
  • missing the obvious
  • catastrophic forgetting
  • human biases in the data
  • machine bias
  • math-washing / bias laundering
  • bias amplification
  • adversarial attacks

Definite recommendation

I have yet to come across a book that explain AI in this much detail and in a manner as accessible and entertaining as Janelle Shane does in You look like a thing and I love you. Janelle makes machine learning and AI understandable for a wide public without passing on the deeper technical details. Taking a critical stance, she provides a good overview of the strenghts and weaknesses of AI, and a realistic outlook for the future to come. This book is not looking for sensation or hype, although reading it will be a most amusing experience for the more technical as well as the lay reader.

I highly recommend you reward yourself with a copy!