Tag: socialscience

Create a publication-ready correlation matrix, with significance levels, in R

Create a publication-ready correlation matrix, with significance levels, in R

In most (observational) research papers you read, you will probably run into a correlation matrix. Often it looks something like this:

FACTOR ANALYSIS

In Social Sciences, like Psychology, researchers like to denote the statistical significance levels of the correlation coefficients, often using asterisks (i.e., *). Then the table will look more like this:

Table 4 from Family moderators of relation between community ...

Regardless of my personal preferences and opinions, I had to make many of these tables for the scientific (non-)publications of my Ph.D..

I remember that, when I first started using R, I found it quite difficult to generate these correlation matrices automatically.

Yes, there is the cor function, but it does not include significance levels.

Then there the (in)famous Hmisc package, with its rcorr function. But this tool provides a whole new range of issues.

What’s this storage.mode, and what are we trying to coerce again?

Soon you figure out that Hmisc::rcorr only takes in matrices (thus with only numeric values). Hurray, now you can run a correlation analysis on your dataframe, you think…

Yet, the output is all but publication-ready!

You wanted one correlation matrix, but now you have two… Double the trouble?

To spare future scholars the struggle of the early day R programming, I would like to share my custom function correlation_matrix.

My correlation_matrix takes in a dataframe, selects only the numeric (and boolean/logical) columns, calculates the correlation coefficients and p-values, and outputs a fully formatted publication-ready correlation matrix!

You can specify many formatting options in correlation_matrix.

For instance, you can use only 2 decimals. You can focus on the lower triangle (as the lower and upper triangle values are identical). And you can drop the diagonal values:

Or maybe you are interested in a different type of correlation coefficients, and not so much in significance levels:

For other formatting options, do have a look at the source code below.

Now, to make matters even more easy, I wrote a second function (save_correlation_matrix) to directly save any created correlation matrices:

Once you open your new correlation matrix file in Excel, it is immediately ready to be copy-pasted into Word!

If you are looking for ways to visualize your correlations do have a look at the packages corrr and corrplot.

I hope my functions are of help to you!

Do reach out if you get to use them in any of your research papers!

I would be super interested and feel honored.

correlation_matrix

#' correlation_matrix
#' Creates a publication-ready / formatted correlation matrix, using `Hmisc::rcorr` in the backend.
#'
#' @param df dataframe; containing numeric and/or logical columns to calculate correlations for
#' @param type character; specifies the type of correlations to compute; gets passed to `Hmisc::rcorr`; options are `"pearson"` or `"spearman"`; defaults to `"pearson"`
#' @param digits integer/double; number of decimals to show in the correlation matrix; gets passed to `formatC`; defaults to `3`
#' @param decimal.mark character; which decimal.mark to use; gets passed to `formatC`; defaults to `.`
#' @param use character; which part of the correlation matrix to display; options are `"all"`, `"upper"`, `"lower"`; defaults to `"all"`
#' @param show_significance boolean; whether to add `*` to represent the significance levels for the correlations; defaults to `TRUE`
#' @param replace_diagonal boolean; whether to replace the correlations on the diagonal; defaults to `FALSE`
#' @param replacement character; what to replace the diagonal and/or upper/lower triangles with; defaults to `""` (empty string)
#'
#' @return a correlation matrix
#' @export
#'
#' @examples
#' `correlation_matrix(iris)`
#' `correlation_matrix(mtcars)`
correlation_matrix <- function(df, 
                               type = "pearson",
                               digits = 3, 
                               decimal.mark = ".",
                               use = "all", 
                               show_significance = TRUE, 
                               replace_diagonal = FALSE, 
                               replacement = ""){
  
  # check arguments
  stopifnot({
    is.numeric(digits)
    digits >= 0
    use %in% c("all", "upper", "lower")
    is.logical(replace_diagonal)
    is.logical(show_significance)
    is.character(replacement)
  })
  # we need the Hmisc package for this
  require(Hmisc)
  
  # retain only numeric and boolean columns
  isNumericOrBoolean = vapply(df, function(x) is.numeric(x) | is.logical(x), logical(1))
  if (sum(!isNumericOrBoolean) > 0) {
    cat('Dropping non-numeric/-boolean column(s):', paste(names(isNumericOrBoolean)[!isNumericOrBoolean], collapse = ', '), '\n\n')
  }
  df = df[isNumericOrBoolean]
  
  # transform input data frame to matrix
  x <- as.matrix(df)
  
  # run correlation analysis using Hmisc package
  correlation_matrix <- Hmisc::rcorr(x, type = type)
  R <- correlation_matrix$r # Matrix of correlation coeficients
  p <- correlation_matrix$P # Matrix of p-value 
  
  # transform correlations to specific character format
  Rformatted = formatC(R, format = 'f', digits = digits, decimal.mark = decimal.mark)
  
  # if there are any negative numbers, we want to put a space before the positives to align all
  if (sum(!is.na(R) & R < 0) > 0) {
    Rformatted = ifelse(!is.na(R) & R > 0, paste0(" ", Rformatted), Rformatted)
  }

  # add significance levels if desired
  if (show_significance) {
    # define notions for significance levels; spacing is important.
    stars <- ifelse(is.na(p), "", ifelse(p < .001, "***", ifelse(p < .01, "**", ifelse(p < .05, "*", ""))))
    Rformatted = paste0(Rformatted, stars)
  }
  
  # make all character strings equally long
  max_length = max(nchar(Rformatted))
  Rformatted = vapply(Rformatted, function(x) {
    current_length = nchar(x)
    difference = max_length - current_length
    return(paste0(x, paste(rep(" ", difference), collapse = ''), sep = ''))
  }, FUN.VALUE = character(1))
  
  # build a new matrix that includes the formatted correlations and their significance stars
  Rnew <- matrix(Rformatted, ncol = ncol(x))
  rownames(Rnew) <- colnames(Rnew) <- colnames(x)
  
  # replace undesired values
  if (use == 'upper') {
    Rnew[lower.tri(Rnew, diag = replace_diagonal)] <- replacement
  } else if (use == 'lower') {
    Rnew[upper.tri(Rnew, diag = replace_diagonal)] <- replacement
  } else if (replace_diagonal) {
    diag(Rnew) <- replacement
  }
  
  return(Rnew)
}

save_correlation_matrix

#' save_correlation_matrix
#' Creates and save to file a fully formatted correlation matrix, using `correlation_matrix` and `Hmisc::rcorr` in the backend
#' @param df dataframe; passed to `correlation_matrix`
#' @param filename either a character string naming a file or a connection open for writing. "" indicates output to the console; passed to `write.csv`
#' @param ... any other arguments passed to `correlation_matrix`
#'
#' @return NULL
#'
#' @examples
#' `save_correlation_matrix(df = iris, filename = 'iris-correlation-matrix.csv')`
#' `save_correlation_matrix(df = mtcars, filename = 'mtcars-correlation-matrix.csv', digits = 3, use = 'lower')`
save_correlation_matrix = function(df, filename, ...) {
  return(write.csv2(correlation_matrix(df, ...), file = filename))
}

Sign up to keep up to date on the latest R, Data Science & Tech content:

Free Springer Books during COVID19

Free Springer Books during COVID19

Update: Unfortunately, Springer removed the free access to its books.

Book publisher Springer just released over 400 book titles that can be downloaded free of charge following the corona-virus outbreak.

Here’s the full overview: https://link.springer.com/search?facet-content-type=%22Book%22&package=mat-covid19_textbooks&facet-language=%22En%22&sortOrder=newestFirst&showAll=true

Most of these books will normally set you back about $50 to $150, so this is a great deal!

There are many titles on computer science, programming, business, psychology, and here are some specific titles that might interest my readership:

Note that I only got to page 8 of 21, so there are many more free interesting titles out there!

Join 274 other followers

Bayesian data analysis for newcomers

Bayesian data analysis for newcomers

Professor John Kruschke and Torrin Liddell – one of his Ph.D. students at Indiana University – wrote a fantastically useful scientific paper introducing Bayesian data analysis to the masses. Kruschke and Liddell explain the main ideas behind Bayesian statistics, how Bayesians deal with continuous and binary variables, how to use and set meaningful priors, the differences between confidence and credibility intervals, how to perform model comparison tests, and many more. The paper is published open access so you can read it here.

I found it incredibly useful, providing me with a better understanding of how Bayesian analysis works, what kind of questions you can answer with it, and what the resulting insights would comprise of. After reading it, I was honestly asking myself why I don’t use Bayesian methods more often… So what’s next, how to learn more?

 

Simpson’s Paradox: Two HR examples with R code.

Simpson’s Paradox: Two HR examples with R code.

Simpson (1951) demonstrated that a statistical relationship observed within a population—i.e., a group of individuals—could be reversed within all subgroups that make up that population. This phenomenon, where X seems to relate to Y in a certain way, but flips direction when the population is split for W, has since been referred to as Simpson’s paradox. Others names, according to Wikipedia, include the Simpson-Yule effect, reversal paradox or amalgamation paradox.

The most famous example has to be the seemingly gender-biased Berkeley admission rates:

“Examination of aggregate data on graduate admissions to the University of California, Berkeley, for fall 1973 shows a clear but misleading pattern of bias against female applicants. Examination of the disaggregated data reveals few decision-making units that show statistically significant departures from expected frequencies of female admissions, and about as many units appear to favor women as to favor men. If the data are properly pooled, taking into account the autonomy of departmental decision making, thus correcting for the tendency of women to apply to graduate departments that are more difficult for applicants of either sex to enter, there is a small but statistically significant bias in favor of women. […] The bias in the aggregated data stems not from any pattern of discrimination on the part of admissions committees, which seem quite fair on the whole, but apparently from prior screening at earlier levels of the educational system.” – part of abstract of Bickel, Hammel, & O’Connel (1975)

In a table, the effect becomes clear. While it seems as if women are rejected more often overall, women are actually less often rejected on a departmental level. Women simply applied to more selective departments more often (E & C below), resulting in the overall lower admission rate for women (35% as opposed to 44% for men).

Afbeeldingsresultaat voor berkeley simpson's paradox
Copied from Bits of Pi

Examples in HR

Simpsons Paradox can easily occur in organizational or human resources settings as well. Let me run you through two illustrated examples, I simulated:

Assume you run a company of 1000 employees and you have asked all of them to fill out a Big Five personality survey. Per individual, you therefore have a score depicting his/her personality characteristic Neuroticism, which can run from 0 (not at all neurotic) to 7 (very neurotic). Now you are interested in the extent to which this Neuroticism of employees relates to their Job Performance (measured 0 – 100) and their Salary (measured in Euro’s per Year). In order to get a sense of the effects, you may decide to visualize both these relations in scatter plots:

downloaddownload (6)

From these visualizations it would look like Neuroticism relates significantly and positively to both employees’ performance and their yearly salary. Should you select more neurotic people to improve your overall company performance? Or are you discriminating emotionally-stable (non-neurotic) employees when it comes to salary?

Taking a closer look at the subgroups in your data, you might however find very different relationships. For instance, the positive relationship between neuroticism and performance may only apply to technical positions, but not to those employees’ in service-oriented jobs.

download (7).png

Similarly, splitting the employees by education level, it becomes clear that there is a relationship between neuroticism and education level that may explain the earlier association with salary. More educated employees receive higher salaries and within these groups, neuroticism is actually related to lower yearly income.

download (8).png

If you’d like to see the code used to simulate these data and generate the examples, you can find the R markdown file here on Rpubs.

Solving the paradox

Kievit and colleagues (2013) argue that Simpsons paradox may occur in a wide variety of research designs, methods, and questions, particularly within the social and medical sciences. As such, they propose several means to “control” or minimize the risk of it occurring. The paradox may be prevented from occurring altogether by more rigorous research design: testing mechanisms in longitudinal or intervention studies. However, this is not always feasible. Alternatively, the researchers pose that data visualization may help recognize the patterns and subgroups and thereby diagnose paradoxes. This may be easy if your data looks like this:

An external file that holds a picture, illustration, etc. Object name is fpsyg-04-00513-g0001.jpg

But rather hard, or even impossible, when your data looks more like the below:

An external file that holds a picture, illustration, etc. Object name is fpsyg-04-00513-g0003.jpg

Clustering may nevertheless help to detect Simpson’s paradox when it is not directly observable in the data. To this end, Kievit and Epskamp (2012) have developed a tool to facilitate the detection of hitherto undetected patterns of association in existing datasets. It is written in R, a language specifically tailored for a wide variety of statistical analyses which makes it very suitable for integration into the regular analysis workflow. As an R package, the tool is is freely available and specializes in the detection of cases of Simpson’s paradox for bivariate continuous data with categorical grouping variables (also known as Robinson’s paradox), a very common inference type for psychologists. Finally, its code is open source and can be extended and improved upon depending on the nature of the data being studied.

One example of application is provided in the paper, for a dataset on coffee and neuroticism. A regression analysis would suggest a significant positive association between coffee and neuroticism overall. However, when the detection algorithm of the R package is applied, a different picture appears: the analysis shows that there are three latent clusters present and that the purported positive relationship only holds for one cluster whereas it is negative in the others.

An external file that holds a picture, illustration, etc. Object name is fpsyg-04-00513-g0006.jpg

Update 24-10-2017: minutephysics – one of my favorite YouTube channels – uploaded a video explaining Simpson’s paradox very intuitively in a medical context:

Update 01-11-2017: minutephysics uploaded a follow-up video:

The paradox is that we remain reluctant to fight our bias, even when they are put in plain sight.