Tag: patterns

Predictive Power Score: Finding predictive patterns in your dataset

Update March, 2021: My R package for the predictive power score (ppsr) is live on CRAN!

Last week, I shared this Medium blog on PPS — or Predictive Power Score — on my LinkedIn and got so many enthousiastic responses, that I had to share it with here too.

Basically, the predictive power score is a normalized metric (values range from 0 to 1) that shows you to what extent you can use a variable X (say age) to predict a variable Y (say weight in kgs).

A PPS high score of, for instance, 0.85, would show that weight can be predicted pretty good using age.

A low PPS score, of say 0.10, would imply that weight is hard to predict using age.

The PPS acts a bit like a correlation coefficient we’re used too, but it is also different in many ways that are useful to data scientists:

1. PPS also detects and summarizes non-linear relationships
2. PPS is assymetric, so that it models Y ~ X, but not necessarily X ~ Y
3. PPS can summarize predictive value of / among categorical variables and nominal data

However, you may argue that the PPS is harder to interpret than the common correlation coefficent:

1. PPS can reflect quite complex and very different patterns
2. Therefore, PPS are hard to compare: a 0.5 may reflect a linear relationship but also many other relationships
3. PPS are highly dependent on the used algorithm: you can use any algorithm from OLS to CART to full-blown NN or XGBoost. Your algorithm hihgly depends the patterns you’ll detect and thus your scores
4. PPS are highly dependent on the the evaluation metric (RMSE, MAE, etc).

Here’s an example picture from the original blog, showing a case in which PSS shows the relevant predictive value of Y ~ X, whereas a correlation coefficient would show no relationship whatsoever:

Here’s two more pictures from the original blog showing the differences with a standard correlation matrix on the Titanic data:

I highly suggest you read the original blog for more details and information, and that you check out the associated Python package `ppscore`:

Installing the package:

`pip install ppscore`

Calculating the PPS for a given pandas dataframe:

`import ppscore as ppspps.score(df, "feature_column", "target_column")`

You can also calculate the whole PPS matrix:

`pps.matrix(df)`

There’s no R package yet, but it should not be hard to implement this general logic.

Florian Wetschoreck — the author — already noted that there may be several use cases where he’d think PPS may add value:

Find patterns in the data [red: data exploration]: The PPS finds every relationship that the correlation finds — and more. Thus, you can use the PPS matrix as an alternative to the correlation matrix to detect and understand linear or nonlinear patterns in your data. This is possible across data types using a single score that always ranges from 0 to 1.

Feature selection: In addition to your usual feature selection mechanism, you can use the predictive power score to find good predictors for your target column. Also, you can eliminate features that just add random noise. Those features sometimes still score high in feature importance metrics. In addition, you can eliminate features that can be predicted by other features because they don’t add new information. Besides, you can identify pairs of mutually predictive features in the PPS matrix — this includes strongly correlated features but will also detect non-linear relationships.

Detect information leakage: Use the PPS matrix to detect information leakage between variables — even if the information leakage is mediated via other variables.

Data Normalization: Find entity structures in the data via interpreting the PPS matrix as a directed graph. This might be surprising when the data contains latent structures that were previously unknown. For example: the TicketID in the Titanic dataset is often an indicator for a family.

https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598

The Mental Game of Python, by Raymond Hettinger

YouTube recommended I’d watch this recorded presentation by Raymond Hettinger at PyBay2019 last October. Quite a long presentation for what I’d normally watch, but what an eye-openers it contains!

Raymond Hettinger is a Python core developer and in this video he presents 10 programming strategies in these 60 minutes, all using live examples. Some are quite obvious, but the presentation and examples make them very clear. Raymond presents some serious programming truths, and I think they’ll stick.

First, Raymond discusses chunking and aliasing. He brings up the theory that the human mind can only handle/remember 7 pieces of information at a time, give or take 2. Anything above proves to much cognitive load, and causes discomfort as well as errors. Hence, in a programming context, we need to make sure programmers can use all 7 to improve the code, rather than having to decypher what’s in front of them. In a programming context, we do so by modularizing and standardizing through functions, modules, and packages. Raymond uses the Python random module to hightlight the importance of chunking and modular code. This part was quite long, but still interesting.

For the next two strategies, Raymond quotes the Feinmann method of solving problems: “(1) write down a clear problem specification; (2) think very, very hard; (3) write down a solution”. Using the example of a tree walker, Raymond shows how the strategies of incremental development and solving simpler programs can help you build programs that solve complex problems. This part only lasts a couple of minutes but really underlines the immense value of these strategies.

Next, Raymond touches on the DRY principle: Don’t Repeat Yourself. But in a context I haven’t seen it in yet, object oriented programming [OOP], classes, and inherintance.

Raymond continues to build his arsenal of programming strategies in the next 10 minutes, where he argues that programmers should repeat tasks manually until patterns emerge, before they starting moving code into functions. Even though I might not fully agree with him here, he does have some fun examples of file conversion that speak in his case.

Lastly, Raymond uses the graph below to make the case that OOP is a graph traversal problem. According to Raymond, the Python ecosystem is so rich that there’s often no need to make new classes. You can simply look at the graph below. Look for the island you are currently on, check which island you need to get to, and just use the methods that are available, or write some new ones.

While there were several more strategies that Raymond wanted to discuss, he doesn’t make it to the end of his list of strategies as he spend to much time on the first, chunking bit. Super curious as to the rest? Contact Raymond on Twitter.