Tag: conference

Data Science vs. Data Alchemy – by Lucas Vermeer

Data Science vs. Data Alchemy – by Lucas Vermeer

How do scurvy, astronomy, alchemy and data science relate to each other?

In this goto conference presentation, Lucas Vermeer — Director of Experimentation at Booking.com — uses some amazing storytelling to demonstrate how the value of data (science) is largely by organizations capability to gather the right data — the data they actually need.

It’s a definite recommendation to watch for data scientists and data science leaders out there.

Here are the slides, and they contain some great oneliners:

Best Tech & Programming Talks Ever

Best Tech & Programming Talks Ever

Every now and then, Twitter will offer these golden resources.

Ashley Willis recently asked people to name the best tech talk they’ve ever seen and the results are a resource I don’t want to lose.

Hundreds of people responded, sharing their contenders for the title.

Below, I selected some of the top-rated talks and clustered them accordingly. Click a category to jump to the section.

Big Idea & Programming Meta-Talks

The Future of Programming

Growing a Language

The Mess We’re In

Making Users Awesome

Ethical Dilemmas in Software Engineering

Testing code

Adding Eyes to Your Test Automation Framework

TATFT – Test All The F*cking Time

Language-Specific talks

Concurrency (Python)

How we program multicores (erlang)

Y Not- Adventures in Functional Programming (Ruby)

JavaScript: The Good Parts

Code Design

Core Design Principles for Software Developers

Design Patterns vs Anti pattern in APL

Containers & Kubernetes

The Container Operator’s Manual

Write a Container in Go From Scratch

Container Hacks and Fun Images

Kubernetes and the Path to Serverless

Let’s Build Kubernetes, With a Spreadsheet and Volunteers

Cover image via: https://toggl.com/blog/best-tech-websites

The Mental Game of Python, by Raymond Hettinger

The Mental Game of Python, by Raymond Hettinger

YouTube recommended I’d watch this recorded presentation by Raymond Hettinger at PyBay2019 last October. Quite a long presentation for what I’d normally watch, but what an eye-openers it contains!

Raymond Hettinger is a Python core developer and in this video he presents 10 programming strategies in these 60 minutes, all using live examples. Some are quite obvious, but the presentation and examples make them very clear. Raymond presents some serious programming truths, and I think they’ll stick.

First, Raymond discusses chunking and aliasing. He brings up the theory that the human mind can only handle/remember 7 pieces of information at a time, give or take 2. Anything above proves to much cognitive load, and causes discomfort as well as errors. Hence, in a programming context, we need to make sure programmers can use all 7 to improve the code, rather than having to decypher what’s in front of them. In a programming context, we do so by modularizing and standardizing through functions, modules, and packages. Raymond uses the Python random module to hightlight the importance of chunking and modular code. This part was quite long, but still interesting.

For the next two strategies, Raymond quotes the Feinmann method of solving problems: “(1) write down a clear problem specification; (2) think very, very hard; (3) write down a solution”. Using the example of a tree walker, Raymond shows how the strategies of incremental development and solving simpler programs can help you build programs that solve complex problems. This part only lasts a couple of minutes but really underlines the immense value of these strategies.

Next, Raymond touches on the DRY principle: Don’t Repeat Yourself. But in a context I haven’t seen it in yet, object oriented programming [OOP], classes, and inherintance.

Raymond continues to build his arsenal of programming strategies in the next 10 minutes, where he argues that programmers should repeat tasks manually until patterns emerge, before they starting moving code into functions. Even though I might not fully agree with him here, he does have some fun examples of file conversion that speak in his case.

Lastly, Raymond uses the graph below to make the case that OOP is a graph traversal problem. According to Raymond, the Python ecosystem is so rich that there’s often no need to make new classes. You can simply look at the graph below. Look for the island you are currently on, check which island you need to get to, and just use the methods that are available, or write some new ones.

While there were several more strategies that Raymond wanted to discuss, he doesn’t make it to the end of his list of strategies as he spend to much time on the first, chunking bit. Super curious as to the rest? Contact Raymond on Twitter.

Python for R users

Python for R users

Wanting to broaden your scope and learn a new programming language? This great workshop was given at EARL 2018 by Mango Solutions and helps R programmers transition into Python building on their existing R knowledge. The workshop includes exercises that introduce you to the key concepts of Python and some of its most powerful packages for data science, including numpy, pandas, sklearn, and seaborn.

Have a look at the associated workshop guide that walk you through the assignments, or at the github repo with all materials in Jupyter notebooks.

rstudio::conf 2019 summary

rstudio::conf 2019 summary

Cool intro video!
Thanks to Amelia for pointing to it

Welcome to rstudio::conf 2019

Similar to last year, I was not able to attend rstudio::conf 2019.

Fortunately, so much of the conference is shared on Twitter and media outlets that I still felt included. Here are some things that I liked and learned from, despite the Austin-Tilburg distance.

All presentations are streamed

One great thing about rstudio::conf is that all presentations are streamed and later posted on the RStudio website.

Of what I’ve already reviewed, I really liked Jenny Bryan’s presentation on lazy evaluation, Max Kuhn’s presentation on parsnip, and teaching data science with puzzles by Irene Steves. Also, the gt package is a serious power tool! And I was already a gganimate fanboy, as you know from here and here.

One of the insights shared in Jenny Bryan’s talk that can be a life-saver

I think I’m going to watch all talks over the coming weekends!

Slides & Extra Materials

There’s an official rstudio-conf repository on Github hosting many materials in an orderly fashion.

Karl Broman made his own awesome GitHub repository with links to the videos, the slides, and all kinds of extra resources.

Karl’s handy github repo of rstudio::conf

All takeaways in a handy #rstudioconf Shiny app

Garrick Aden-Buie made a fabulous Shiny app that allows you to review all #rstudioconf tweets during and since the conference. It even includes some random statistics about the tweets, and a page with all the shared media.

Some random takeaways

Via this tweet about this rstudio::conf presentation
Some words of wisdom by Emily Robinson (whom we know from here)
You should consider joining #tidytuesday!

Extra: Online RStudio Webinars

Did you know that RStudio also posts all the webinars they host? There really are some hidden pearls among them. For instance, this presentation by Nathan Stephens on rendering rmarkdown to powerpoint will save me tons of work, and those new to broom will also be astonished by this webinar by Alex Hayes.

PyData, London 2018

PyData, London 2018

PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

April 2018, a PyData conference was held in London, with three days of super interesting sessions and hackathons. While I couldn’t attend in person, I very much enjoy reviewing the sessions at home as all are shared open access on YouTube channel PyDataTV!

In the following section, I will outline some of my favorites as I progress through the channel:

Winning with simple, even linear, models:

One talk that really resonated with me is Vincent Warmerdam‘s talk on “Winning with Simple, even Linear, Models“. Working at GoDataDriven, a data science consultancy firm in the Netherlands, Vincent is quite familiar with deploying deep learning models, but is also midly annoyed by all the hype surrounding deep learning and neural networks. Particularly when less complex models perform equally well or only slightly less. One of his quote’s nicely sums it up:

“Tensorflow is a cool tool, but it’s even cooler when you don’t need it!”

— Vincent Warmerdam, PyData 2018

In only 40 minutes, Vincent goes to show the finesse of much simpler (linear) models in all different kinds of production settings. Among others, Vincent shows:

  • how to solve the XOR problem with linear models
  • how to win at timeseries with radial basis features
  • how to use weighted regression to deal with historical overfitting
  • how deep learning models introduce a new theme of horror in production
  • how to create streaming models using passive aggressive updating
  • how to build a real-time video game ranking system using mere histograms
  • how to create a well performing recommender with two SQL tables
  • how to rock at data science and machine learning using Python, R, and even Stan