Category: python

Handling and Converting Data Types in Python Pandas

Handling and Converting Data Types in Python Pandas

Data types are one of those things that you don’t tend to care about until you get an error or some unexpected results. It is also one of the first things you should check once you load a new data into pandas for further analysis.

Chris Moffit

In this short tutorial, Chris shows how to the pandas dtypes map to the numpy and base Python data types.

A screenshot of the data type mapping.

Moreover, Chris demonstrates how to handle and convert data types so you can speed up your data analysis. Both using custom functions and anonymous lambda functions.

A snapshot from the original blog.

A very handy guide indeed, after which you will be able to read in your datasets into Python in the right format from the get-go!

Using data type casting, lambda functions, and functional programming to read in data in Python. Via pbpython.com/pandas_dtypes.html

How most statistical tests are linear models

How most statistical tests are linear models

Jonas Kristoffer Lindeløv wrote a great visual explanation of how the most common statistical tests (t-test, ANOVA, ANCOVA, etc) are all linear models in the back-end.

Jonas’ original blog uses R programming to visually show how the tests work, what the linear models look like, and how different approaches result in the same statistics.

George Ho later remade a Python programming version of the same visual explanation.

If I was thought statistics and methodology this way, I sure would have struggled less! Have a look yourself: https://lindeloev.github.io/tests-as-linear/

100 Python pandas tips and tricks

100 Python pandas tips and tricks

Working with Python’s pandas library often?

This resource will be worth its length in gold!

Kevin Markham shares his tips and tricks for the most common data handling tasks on twitter. He compiled the top 100 in this one amazing overview page. Find the hyperlinks to specific sections below!

Quicklinks to categories

Kevin even made a video demonstrating his 25 most useful tricks:

Tutorial: Demystifying Deep Learning for Data Scientists

Tutorial: Demystifying Deep Learning for Data Scientists

In this great tutorial for PyCon 2020, Eric Ma proposes a very simple framework for machine learning, consisting of only three elements:

  1. Model
  2. Loss function
  3. Optimizer

By adjusting the three elements in this simple framework, you can build any type of machine learning program.

In the tutorial, Eric shows you how to implement this same framework in Python (using jax) and implement linear regression, logistic regression, and artificial neural networks all in the same way (using gradient descent).

I can’t even begin to explain it as well as Eric does himself, so I highly recommend you watch and code along with the Youtube tutorial (~1 hour):

If you want to code along, here’s the github repository: github.com/ericmjl/dl-workshop

Have you ever wondered what goes on behind the scenes of a deep learning framework? Or what is going on behind that pre-trained model that you took from Kaggle? Then this tutorial is for you! In this tutorial, we will demystify the internals of deep learning frameworks – in the process equipping us with foundational knowledge that lets us understand what is going on when we train and fit a deep learning model. By learning the foundations without a deep learning framework as a pedagogical crutch, you will walk away with foundational knowledge that will give you the confidence to implement any model you want in any framework you choose.

https://www.youtube.com/watch?v=gGu3pPC_fBM
Determine optimal sample sizes for business value in A/B testing, by Chris Said

Determine optimal sample sizes for business value in A/B testing, by Chris Said

A/B testing is a method of comparing two versions of some thing against each other to determine which is better. A/B tests are often mentioned in e-commerce contexts, where the things we are comparing are web pages.

ab-testing
via optimizely.com/nl/optimization-glossary/ab-testing/

Business leaders and data scientists alike face a difficult trade-off when running A/B tests: How big should the A/B test be? Or in other words, After collecting how many data points, or running for how many days, should we make a decision whether A or B is the best way to go?

This is a tradeoff because the sample size of an A/B test determines its statistical power. This statistical power, in simple terms, determines the probability of a A/B test showing an effect if there is actually really an effect. In general, the more data you collect, the higher the odds of you finding the real effect and making the right decision.

By default, researchers often aim for 80% power, with a 5% significance cutoff. But is this general guideline really optimal for the tradeoff between costs and benefits in your specific business context? Chris thinks not.

Chris said wrote a great three-piece blog in which he explains how you can mathematically determine the optimal duration of A/B-testing in your own company setting:

Part I: General Overview. Starts with a mostly non-technical overview and ends with a section called “Three lessons for practitioners”.

Part II: Expected lift. A more technical section that quantifies the benefits of experimentation as a function of sample size.

Part III: Aggregate time-discounted lift. A more technical section that quantifies the costs of experimentation as a function of sample size. It then combines costs and benefits into a closed-form expression that can be optimized. Ends with an FAQ.

Chris Said (via)

Moreover, Chris provides three practical advices that show underline 80% statistical power is not always the best option:

  1. You should run “underpowered” experiments if you have a very high discount rate
  2. You should run “underpowered” experiments if you have a small user base
  3. Neverheless, it’s far better to run your experiment too long than too short
Simulations shows that for Chris’ hypothetical company and A/B test, 38 days would be the optimal period of time to gather data
via chris-said.io/2020/01/10/optimizing-sample-sizes-in-ab-testing-part-I/

Chris ran all his simulations in Python and shared the notebooks.

Making Pictures 3D using Context-aware Layered Depth Inpainting

Making Pictures 3D using Context-aware Layered Depth Inpainting

Several Chinese Ph.D. students wrote a PyTorch program that can turn your holiday pictures into 3D sceneries. They call it 3D photo inpainting. Here are some examples

And here’s the new method compares to previous techniques:

Here are several links to more detailed resources: [Paper] [Project Website] [Google Colab] [GitHub]

We propose a method for converting a single RGB-D input image into a 3D photo, i.e., a multi-layer representation for novel view synthesis that contains hallucinated color and depth structures in regions occluded in the original view. We use a Layered Depth Image with explicit pixel connectivity as underlying representation, and present a learning-based inpainting model that iteratively synthesizes new local color-and-depth content into the occluded region in a spatial context-aware manner. The resulting 3D photos can be efficiently rendered with motion parallax using standard graphics engines. We validate the effectiveness of our method on a wide range of challenging everyday scenes and show fewer artifacts when compared with the state-of-the-arts.

Via github.com/vt-vl-lab/3d-photo-inpainting
3D Photography Inpainting: Exploring Art with AI. - Towards Data ...
I loved this one as well, but it could be a different technique used, via Medium