Category: application

Google’s Guidebook for Developing AI Product Development

Google’s Guidebook for Developing AI Product Development

I came across another great set of curated resources by one of the teams at Google:

The People + AI Guidebook.

The People + AI Guidebook was written to help user experience (UX) professionals and product managers follow a human-centered approach to AI.

The Guidebook’s recommendations are based on data and insights from over a hundred individuals across Google product teams, industry experts, and academic research.

These six chapters follow the product development flow, and each one has a related worksheet to help turn guidance into action.

The People & AI guidebook is one of the products of the major PAIR project team (People & AI Research).

Here are the direct links to the six guidebook chapters:

Links to the related worksheets you can find here.

Repository of Production Machine Learning

Repository of Production Machine Learning

The Institute for Ethical Machine Learning compiled this amazing curated list of open source libraries that will help you deploy, monitor, version, scale, and secure your production machine learning.

🔍 Explaining predictions & models🔏 Privacy preserving ML📜 Model & data versioning
🏁 Model Training Orchestration💪 Model Serving and Monitoring🤖 Neural Architecture Search
📓 Reproducible Notebooks📊 Visualisation frameworks🔠 Industry-strength NLP
🧵 Data pipelines & ETL🏷️ Data Labelling🗞️ Data storage
📡 Functions as a service🗺️ Computation distribution📥 Model serialisation
🧮 Optimized calculation frameworks💸 Data Stream Processing🔴 Outlier and Anomaly Detection
🌀 Feature engineering🎁 Feature Stores⚔ Adversarial Robustness
💰 Commercial Platforms
Direct links to the sections of the Github repo

The Institute for Ethical Machine Learning is a think-tank that brings together with technology leaders, policymakers & academics to develop standards for ML.

What does a tech lead do? – by Jake Voytko

What does a tech lead do? – by Jake Voytko

According to Jake Voytko, data science and engineering teams run more efficiently and spread knowledge more quickly when there is a single person setting the technical direction of a team. The so-called tech lead.

Sometimes tech lead is an official title, referring to the position between an engineering manager and the engineering team. Oftentimes it is just a unofficial role one grows in to.

Now, according to Jake, you can learn to become a tech lead. And you can be good at it too. Somebody has to do it, so it might as well be you! It could allow you to leverage your time to move the organization forward, and enables you to influence data science or engineering throughout the entire team!

In this original blog, which I thoroughly enjoyed reading, Jake explains in more detail what it takes to be(come) a good tech lead. Here just the headers copied, but if you’re interested, take a look at the full article:

  • Less time writing code
  • Helping others often (esp. juniors)
  • Helping others first
  • Doing unsexy, unthankful work to enable the team
  • Being an ally (of underrepresented groups)
  • Spreading knowledge, or making sure it spreads

And this is what Jake feels his work week looks like as a tech lead:

Snapshot from the original article

Cover image via TeamGantt.com

Determine optimal sample sizes for business value in A/B testing, by Chris Said

Determine optimal sample sizes for business value in A/B testing, by Chris Said

A/B testing is a method of comparing two versions of some thing against each other to determine which is better. A/B tests are often mentioned in e-commerce contexts, where the things we are comparing are web pages.

ab-testing
via optimizely.com/nl/optimization-glossary/ab-testing/

Business leaders and data scientists alike face a difficult trade-off when running A/B tests: How big should the A/B test be? Or in other words, After collecting how many data points, or running for how many days, should we make a decision whether A or B is the best way to go?

This is a tradeoff because the sample size of an A/B test determines its statistical power. This statistical power, in simple terms, determines the probability of a A/B test showing an effect if there is actually really an effect. In general, the more data you collect, the higher the odds of you finding the real effect and making the right decision.

By default, researchers often aim for 80% power, with a 5% significance cutoff. But is this general guideline really optimal for the tradeoff between costs and benefits in your specific business context? Chris thinks not.

Chris said wrote a great three-piece blog in which he explains how you can mathematically determine the optimal duration of A/B-testing in your own company setting:

Part I: General Overview. Starts with a mostly non-technical overview and ends with a section called “Three lessons for practitioners”.

Part II: Expected lift. A more technical section that quantifies the benefits of experimentation as a function of sample size.

Part III: Aggregate time-discounted lift. A more technical section that quantifies the costs of experimentation as a function of sample size. It then combines costs and benefits into a closed-form expression that can be optimized. Ends with an FAQ.

Chris Said (via)

Moreover, Chris provides three practical advices that show underline 80% statistical power is not always the best option:

  1. You should run “underpowered” experiments if you have a very high discount rate
  2. You should run “underpowered” experiments if you have a small user base
  3. Neverheless, it’s far better to run your experiment too long than too short
Simulations shows that for Chris’ hypothetical company and A/B test, 38 days would be the optimal period of time to gather data
via chris-said.io/2020/01/10/optimizing-sample-sizes-in-ab-testing-part-I/

Chris ran all his simulations in Python and shared the notebooks.

Making Pictures 3D using Context-aware Layered Depth Inpainting

Making Pictures 3D using Context-aware Layered Depth Inpainting

Several Chinese Ph.D. students wrote a PyTorch program that can turn your holiday pictures into 3D sceneries. They call it 3D photo inpainting. Here are some examples

And here’s the new method compares to previous techniques:

Here are several links to more detailed resources: [Paper] [Project Website] [Google Colab] [GitHub]

We propose a method for converting a single RGB-D input image into a 3D photo, i.e., a multi-layer representation for novel view synthesis that contains hallucinated color and depth structures in regions occluded in the original view. We use a Layered Depth Image with explicit pixel connectivity as underlying representation, and present a learning-based inpainting model that iteratively synthesizes new local color-and-depth content into the occluded region in a spatial context-aware manner. The resulting 3D photos can be efficiently rendered with motion parallax using standard graphics engines. We validate the effectiveness of our method on a wide range of challenging everyday scenes and show fewer artifacts when compared with the state-of-the-arts.

Via github.com/vt-vl-lab/3d-photo-inpainting
3D Photography Inpainting: Exploring Art with AI. - Towards Data ...
I loved this one as well, but it could be a different technique used, via Medium

Using data science to uncover botnets on Twitter

I love how people are using data and data science to fight fake news these days (see also Identifying Dirty Twitter Bots), and I recently came across another great example.

Conspirador Norteño (real name unkown) is a member of what they call #TheResistance. It’s a group of data scientists discovering and analyzing so-called botnets – networks of artificial accounts on social media websites, like Twitter.

TheResistance uses quantitative analysis to unveil large groups of fake accounts, spreading potential fake news, or fake-endorsing the (fake) news spread by others.

In a recent Twitter thread, Norteno shows how they discovered that many of Dr. Shiva Ayyadurai (self-proclaimed Inventor of Email) his early followers are likely bots.

They looked at the date of these accounts started following Shiva, offset by the date of their accounts’ creation. A remarkeable pattern appeared:

Afbeelding
Via https://twitter.com/conspirator0/status/1244411551546847233/photo/1

Although @va_shiva‘s recent followers look unremarkable, a significant majority of his first 5000 followers appear to have been created in batches and to have subsequently followed @va_shiva in rapid succession.

Looking at those followers in more detail, other suspicious patterns emerge. Their names follow a same pattern, they have an about equal amount of followers, followings, tweets, and (no) likes. Moreover, they were created only seconds apart. Many of them seem to follow each other as well.

Afbeelding
Via https://twitter.com/conspirator0/status/1244411636410187782/photo/1

If that wasn’t enough proof of something’s off, here’s a variety of their tweets… Not really what everyday folks would tweet right? Plus similar patterns again across acounts.

Afbeelding
Via: https://twitter.com/conspirator0/status/1244411760129515522/photo/1

At first, I thought, so what? This Shiva guy probably just set up some automated (Python?) scripts to make Twitter account and follow him. Good for him. It worked out, as his most recent 10k followers followed him organically.

However, it becomes more scary if you notice this Shiva guy is (succesfully) promoting the firing of people working for the government:

Anyways, wanted to share this simple though cool approach to finding bots & fake news networks on social media. I hope you liked it, and would love to hear your thoughts in the comments!