Tag: teded

Think Like a Coder – TEDEd learning series

Think Like a Coder – TEDEd learning series

I stumbled across this TED Ed YouTube playlist called Think Like A Coder. It’s an amusing 10-episode video introduction for those new to programming and coding.

The series follows Ethic, a girl who wakes up in a prison, struck by amnesia, and thus without a clue how she got there. She meets Hedge, a robot she can program to help her escape and, later, save the world. However, she needs to learn how to code the Hedge’s instructions, and write efficient computer programs. Ethic and Hedge embark on a quest to collect three artifacts and must solve their way through a series of programming puzzles.

Episode 1 covers loops.

The adventure begins!

Episode 1: Ethic awakens in a mysterious cell. Can she and robot Hedge solve the programming puzzles blocking their escape?

The wondrous state of Computer Vision, and what the algorithms actually “see”

The wondrous state of Computer Vision, and what the algorithms actually “see”

The field of computer vision tries to replicate our human visual capabilities, allowing computers to perceive their environment in a same way as you and I do. The recent breakthroughs in this field are super exciting and I couldn’t but share them with you.

In the TED talk below by Joseph Redmon (PhD at the University of Washington) showcases the latest progressions in computer vision resulting, among others, from his open-source research on Darknet – neural network applications in C. Most impressive is the insane speed with which contemporary algorithms are able to classify objects. Joseph demonstrates this by detecting all kinds of random stuff practically in real-time on his phone! Moreover, you’ve got to love how well the system works: even the ties worn in the audience are classified correctly!

PS. please have a look at Joseph’s amazing My Little Pony-themed resumé.

The second talk, below, is more scientific and maybe even a bit dry at the start. Blaise Aguera y Arcas (engineer at Google) starts with a historic overview brain research but, fortunately, this serves a cause, as ~6 minutes in Blaise provides one of the best explanations I have yet heard of how a neural network processes images and learns to perceive and classify the underlying patterns. Blaise continues with a similarly great explanation of how this process can be reversed to generate weird, Asher-like images, one could consider creative art:

neuralnetart1.png
An example of a reversed neural network thus “estimating” an image of a bird [via Youtube]
Blaise’s colleagues at Google took this a step further and used t-SNE to visualize the continuous space of animal concepts as perceived by their neural network, here a zoomed in part on the Armadillo part of the map, apparently closely located to fish, salamanders, and monkeys?

neuralnetart2.png
A zoomed view of part of a t-SNE map of latent animal concepts generated by reversing a neural network [via Youtube]
We’ve seen these latent spaces/continua before. This example Andrej Karpathy shared immediately comes to mind:

Blaise’s presentaton you can find here:

If you want to learn more about this process of image synthesis through deep learning, I can recommend the scientific papers discussed by one of my favorite Youtube-channels, Two-Minute Papers. Karoly’s videos, such as the ones below, discuss many of the latest developments:

Let me know if you have any other video’s, papers, or materials you think are worthwhile!

Sorting Algorithms 101: Visualized

Sorting Algorithms 101: Visualized

Sorting is one of the central topic in most Computer Science degrees. In general, sorting refers to the process of rearranging data according to a defined pattern with the end goal of transforming the original unsorted sequence into a sorted sequence. It lies at the heart of successful businesses ventures — such as Google and Amazon — but is also present in many applications we use daily — such as Excel or Facebook.

Many different algorithms have been developed to sort data. Wikipedia lists as many as 45 and there are probably many more. Some work by exchanging data points in a sequence, others insert and/or merge parts of the sequence. More importantly, some algorithms are quite effective in terms of the time they take to sort data — taking only n time to sort n datapoints — whereas others are very slow — taking as much as n^2. Moreover, some algorithms are stable — in the sense that they always take the same amount of time to process n datapoints — whereas others may fluctuate in terms of processing time based on the original order of the data.

I really enjoyed this video by TED-Ed on how to best sort your book collection. It provides a very intuitive introduction into sorting strategies (i.e., algorithms). Moreover, Algorithms to Live By (Christian & Griffiths, 2016) provided the amazing suggestion to get friends and pizza in whenever you need to sort something, next to the great explanation of various algorithms and their computational demand.

The main reason for this blog is that I stumbled across some nice video’s and GIFs of sorting algorithms in action. These visualizations are not only wonderfully intriguing to look at, but also help so much in understanding how the sorting algorithms process the data under the hood. You might want to start with the 4-minute YouTube video below, demonstrating how nine different sorting algorithms (Selection Sort, Shell Sort, Insertion Sort, Merge Sort, Quick Sort, Heap Sort, Bubble Sort, Comb Sort, & Cocktail Sort) process a variety of datasets.

This interactive website toptal.com allows you to play around with the most well-known sorting algorithms, putting them to work on different datasets. For the grande finale, I found these GIFs and short video’s of several sorting algorithms on imgur. In the visualizations below, each row of the image represents an independent list being sorted. You can see that Bubble Sort is quite slow:

Cocktail Shaker Sort already seems somewhat faster, but still takes quite a while.

For some algorithms, the visualization clearly shows that the settings you pick matter. For instance, Heap Sort is much quicker if you choose to shift down instead of up.

In contrast, for Merge Sort it doesn’t matter whether you sort by breadth first or depth first.

The imgur overview includes many more visualized sorting algorithms but I don’t want to overload WordPress or your computer, so I’ll leave you with two types of Radix Sort, the rest you can look up yourself!