Tag: machinelearning

Privacy, Compliance, and Ethical Issues with Predictive People Analytics

Privacy, Compliance, and Ethical Issues with Predictive People Analytics

November 9th 2018, I defended my dissertation on data-driven human resource management, which you can read and download via this link. On page 149, I discuss several of the issues we face when implementing machine learning and analytics within an HRM context. For the references and more detailed background information, please consult the full dissertation. More interesting reads on ethics in machine learning can be found here.


Privacy, Compliance, and Ethical Issues

Privacy can be defined as “a natural right of free choice concerning interaction and communication […] fundamentally linked to the individual’s sense of self, disclosure of self to others and his or her right to exert some level of control over that process” (Simms, 1994, p. 316). People analytics may introduce privacy issues in many ways, including the data that is processed, the control employees have over their data, and the free choice experienced in the work place. In this context, ethics would refer to what is good and bad practice from a standpoint of moral duty and obligation when organizations collect, analyze, and act upon HRM data. The next section discusses people analytics specifically in light of data privacy, legal boundaries, biases, and corporate social responsibility and free choice.

Data Privacy

Technological advancements continue to change organizational capabilities to collect, store, and analyze workforce data and this forces us to rethink the concept of privacy (Angrave et al., 2016; Bassi, 2011; Martin & Freeman, 2003). For the HRM function, data privacy used to involve questions such as “At what team size can we use the average engagement score without causing privacy infringements?” or “How long do we retain exit interview data?” In contrast, considerably more detailed information on employees’ behaviors and cognitions can be processed on an almost continuous basis these days. For instance, via people analytics, data collected with active monitoring systems help organizations to improve the accuracy of their performance measurement, increasing productivity and reducing operating costs (Holt, Lang, & Sutton, 2016). However, such systems seem in conflict with employees’ right to solitude and their freedom from being watched or listened to as they work (Martin & Freeman, 2003) and are perceived as unethical and unpleasant, affecting employees’ health and morale (Ball, 2010; Faletta, 2014; Holt et al., 2016; Martin & Freeman, 2003; Sánchez Abril, Levin, & Del Riego, 2012). Does the business value such monitoring systems bring justify their implementation? One could question whether business value remains when a more long-term and balanced perspective is taken, considering the implications for employee attraction, well-being, and retention. These can be difficult considerations, requiring elaborate research and piloting.

Faletta (2014) asked American HRM professionals which of 21 data sources would be appropriate for use in people analytics. While some were considered appropriate from an ethical perspective (e.g., performance ratings, demographic data, 360-degree feedback), particularly novel data sources were considered problematic: data of e-mail and video surveillance, performance and behavioral monitoring, and social media profiles and messages. At first thought, these seem extreme, overly intrusive data that are not and will not be used for decision-making. However, in reality, several organizations already collect such data (e.g., Hoffmann, Hartman, & Rowe, 2003; Roth et al., 2016) and they probably hold high predictive value for relevant business outcomes. Hence, it is not inconceivable that future organizations will find ways to use these data for personnel-related decisions – legally or illegally. Should they be allowed to? If not, who is going to monitor them? What if the data are used for mutually beneficial goals – to prevent problems or accidents? These and other questions deserve more detailed discussion by scholars, practitioners, and governments – preferably together.

Legal Boundaries

Although HRM professionals should always ensure that they operate within the boundaries of the law, legal compliance does not seem sufficient when it comes to people analytics. Frequently, legal systems are unprepared to defend employees’ privacy against the potential invasions via the increasingly rigorous data collection systems (Boudreau, 2014; Ciocchetti, 2011; Sánchez Abril et al., 2012). Initiatives such as the General Data Protection Regulation in the European Union somewhat restore the power balance, holding organizations and their HRM departments accountable to inform employees what, why, and how personal data is processed and stored. The rights to access, correct, and erase their information is returned to employees (GDPR, 2016). However, such regulation may not always exist and, even if it does, data usage may be unethical, regardless of its legality.

For instance, should organizations use all personnel data for which they have employee consent? One could argue that there are cases where the power imbalance between employers and employees negates the validity of consent. For instance, employees may be asked to sign written elaborate declarations or complex agreements as part of their employment, without being fully aware of what they consent to. Moreover, employees may feel pressured to provide consent in fear of losing their job, losing face, or peer pressure. Relatedly, employees may be incentivized to provide consent because of the perks associated with doing so, without fully comprehending the consequences. For instance, employees may share access to personal behavioral data in exchange for mobile devices, wellness, or mobility benefits, in which case these direct benefits may bias their perception and judgement. In such cases, data usage may not be ethically responsible, regardless of the legal boundaries, and HRM departments in general and people analytics specialists in specific should take the responsibility to champion the privacy and the interests of their employees.

Automating Historic Biases

While ethics can be considered an important factor in any data analytics project, it is particularly so in people analytics projects. HRM decisions have profound implications in an imbalanced relationship, whereas the data within the HRM field often suffer from inherent biases. This becomes particularly clear when exploring applications of predictive analytics in the HRM domain.

For example, imagine that we want to implement a decision-support system to improve the efficiency of our organization’s selection process. A primary goal of such a system could be to minimize the human time (both of our organizational agents and of the potential candidates) wasted on obvious mismatches between candidates and job positions. Under the hood, a decision-support system in a selection setting could estimate a likelihood (i.e., prediction) for each candidate that he/she makes it through the selection process successfully. Recruiters would then only have to interview the candidates that are most likely to be successful, and save valuable time for both themselves and for less probable candidates. In this way, an artificially intelligent system that reviews candidate information and recommends top candidates could considerably decrease the human workload and thereby the total cost of the selection process.

For legal compliance as well as ethical considerations, we would not want such a decision-support system to be biased towards any majority or minority group. Should we therefore exclude demographic and socio-economic factors from our predictive model? What about the academic achievements of candidates, the university they attended, or their performance on our selection tests? Some of those are scientifically validated predictors of future job performance (e.g., Hunter & Schmidt, 1998). However, they also relate to demographic and socio-economic factors and would therefore introduce bias (e.g., Hough, Oswald, & Ployhart, 2001; Pyburn, Ployhart, & Kravitz, 2008; Roth & Bobko, 2000). Do we include or exclude these selection data in our model?

Maybe the simplest solution would be to include all information, to normalize our system’s predictions within groups afterwards (e.g., gender), and to invite the top candidates per group for follow-up interviews. However, which groups do we consider? Do we only normalize for gender and nationality, or also for age and social class? What about combinations of these characteristics? Moreover, if we normalize across all groups and invite the best candidate within each, we might end up conducting more interviews than in the original scenario. Should we thus account for the proportional representation of each of these groups in the whole labor population? As you notice, both the decision-support system and the subject get complicated quickly.

Even more problematic is that any predictive decision-support system in HRM is likely biased from the moment of conception. HRM data is frequently infested with human biases as bias was present in the historic processes that generated the data. For instance, the recruiters in our example may have historically favored candidates with a certain profile, for instance, red hair. After training our decision-support system (i.e., predictive model) on these historic data, it will recognize and copy the pattern that candidates with red hair (or with correlated features, such as a Northwest European nationality) are more likely successful. The system thus learns to recommend those individuals as the top candidates. While this issue could be prevented by training the model on more objective operationalization of candidate success, most HRM data will include its own specific biases. For example, data on performance ratings will include not only the historic preferences of recruiters (i.e., only hired employees received ratings), but also the biases of supervisors and other assessors in the performance evaluation processes. Similar and other biases may occur in data regarding promotions, training courses, talent assessments, or compensation. If we use these data to train our models and systems, we would effectively automate our historic biases. Such issues greatly hinder the implementation of (predictive) people analytics without causing compliance and ethical issues.

Corporate Social Responsibility versus Free Choice

Corporate social responsibility also needs to be discussed in light of people analytics. People analytics could allow HRM departments to work on social responsibility agendas in many ways. For instance, people analytics can help to demonstrate what causes or prevents (un)ethical behavior among employees, to what extent HRM policies and practices are biased, to what extent they affect work-life balance, or how employees can be stimulated to make decisions that benefit their health and well-being. Regarding the latter case, a great practical example comes from Google’s people analytics team. They uncovered that employees could be stimulated to eat more healthy snacks by color-coding snack containers, and that smaller cafeteria plate sizes could prevent overconsumption and food loss (ABC News, 2013). However, one faces difficult ethical dilemmas in this situation. Is it organizations’ responsibility to nudge employees towards good behavior? Who determines what good entails? Should employees be made aware of these nudges? What do we consider an acceptable tradeoff between free choice and societal benefits?

When we consider the potential of predictive analytics in this light, the discussion gets even more complicated. For instance, imagine that organizations could predict work accidents based on historic HRM information, should they be forbidden, allowed, or required to do so? What about health issues, such as stress and burnout? What would be an acceptable accuracy for such models? How do we feel about false positive and false negatives? Could they use individual-level information if that resulted in benefits for employees?

In conclusion, analytics in the HRM domain quickly encounters issues related to privacy, compliance, and ethics. In bringing (predictive) analytics into the HRM domain, we should be careful not to copy and automate the historic biases present in HRM processes and data. The imbalance in the employment relationship puts the responsibility in the hands of organizational agents. The general message is that what can be done with people analytics may differ from what should be done from a corporate social responsibility perspective. The spread of people analytics depends on our collective ability to harness its power ethically and responsibility, to go beyond the legal requirements and champion both the privacy as well as the interests of employees and the wider society. A balanced approach to people analytics – with benefits beyond financial gain for the organization – will be needed to make people analytics accepted by society, and not just another management tool.

Computers decode what humans see: Generating images from brain activity

Computers decode what humans see: Generating images from brain activity

I recently got pointed towards a 2017 paper on bioRxiv that blew my mind: three researchers at the Computational Neuroscience Laboratories at Kyoto, Japan, demonstrate how they trained a deep neural network to decode human functional magnetic resonance imaging (fMRI) patterns and then generate the stimulus images.

In simple words, the scholars used sophisticated machine learning to reconstruct the photo’s their research particpants saw based on their brain activity… INSANE! The below shows the analysis workflow, and an actual reconstructed image. More reconstructions follow further on.

1.PNG
Figure 1 | Deep image reconstruction. Overview of deep image reconstruction is shown. The pixels’ values of the input image are optimized so that the DNN features of the image are similar to those decoded from fMRI activity. A deep generator network (DGN) is optionally combined with the DNN to produce natural-looking images, in which optimization is performed at the input space of the DGN. [original]
Three healthy young adults participated in two types of experiments: an image presentation experiment and an imagery experiment.

In the image presentation experiments, participants were presented with several natural images from the ImageNet database, with 40 images geometrical shapes, and with 10 images of black alphabetic characters. These visual stimuli were rear-projected onto a screen in an fMRI scanner bore. Data from each subject were collected over multiple scanning sessions spanning approximately 10 months. Images were flashed at 2 Hz for several seconds. In the imagery experiment, subjects were asked to visually imagine / remember one of 25 images of the presentation experiments. Subjects were
required to start imagining a target image after seeing some cue words.

In both experimental setups, fMRI data were collected using 3.0-Tesla Siemens MAGNETOM Verio scanner located at the Kokoro Research Center, Kyoto University.

The results, some of which I copied below, are plainly amazing.

2.PNG
Figure 2 | Seen natural image reconstructions. Images with black and gray frames show presented and reconstructed images, respectively (reconstructed from VC activity). a) Reconstructions utilizing the DGN (using DNN1–8). Three reconstructed images
correspond to reconstructions from three subjects. b) Reconstructions with and without the DGN (DNN1–8). The first, second, and third rows show presented images, reconstructions with and without the DGN, respectively. c) Reconstruction quality of seen natural images (error bars, 95% confidence interval (C.I.) across samples; three subjects pooled; chance level, 50%). d)  Reconstructions using different combinations of DNN layers (without the DGN). e) Subjective assessment of reconstructions from different combinations of DNN layers (error bars, 95% C.I. across samples) [original]
3.PNG
Figure 3 | Seen artificial shape reconstructions. Images with black and gray frames show presented and reconstructed images (DNN 1–8, without the DGN). a) Reconstructions for seen colored artificial shapes (VC activity). b, Reconstruction quality of colored artificial shapes. c) Reconstructions of colored artificial shapes obtained from multiple visual areas. d) Reconstruction quality of shape and colors for different visual areas. e) Reconstructions of alphabetical letters. f) Reconstruction quality for alphabetical letters. For b, d, f, error bars  indicate 95% C.I. across samples (three subjects pooled; chance level, 50%)  [original]
4
Supplementary Figure 2 | Other examples of natural image reconstructions obtained with the DGN. Images with black and gray frames show presented and reconstructed images, respectively (reconstructed from VC activity using all DNN layers). Three reconstructed images correspond to reconstructions from three subjects. [original]
5.PNG
Supplementary Figure 3 | Reconstructions through optimization processes. Reconstructed images obtained through the optimization processes are shown (reconstructed from VC activity of Subject 1 using all DNN layers and the DGN). Images with black and gray frames show presented and reconstructed images, respectively. [original]
There were many more examples of reconstructed images, as well as much more detailed information regarding the machine learning approach and experimental setup, so I strongly advise you check out the orginal paper.

I can’t even imagine what such technology would imply for society… Proper minority report stuff here.

Here’s the abstract as an additional teaser:

Abstract

Machine learning-based analysis of human functional magnetic resonance imaging
(fMRI) patterns has enabled the visualization of perceptual content. However, it has been limited to the reconstruction with low-level image bases (Miyawaki et al., 2008; Wen et al., 2016) or to the matching to exemplars (Naselaris et al., 2009; Nishimoto et al., 2011). Recent work showed that visual cortical activity can be decoded (translated) into hierarchical features of a deep neural network (DNN) for the same input image, providing a way to make use of the information from hierarchical visual features (Horikawa & Kamitani, 2017). Here, we present a novel image reconstruction method, in which the pixel values of an image are optimized to make its DNN features similar to those decoded from human brain activity at multiple layers. We found that the generated images resembled the stimulus images (both natural images and artificial shapes) and the subjective visual content during imagery. While our model was solely trained with natural images, our method successfully generalized the reconstruction to artificial shapes, indicating that our model indeed ‘reconstructs’ or ‘generates’ images from brain activity, not simply matches to exemplars. A natural image prior introduced by another deep neural network effectively rendered semantically meaningful details to reconstructions by constraining reconstructed images to be similar to natural images. Furthermore, human judgment of reconstructions suggests the effectiveness of combining multiple DNN layers to enhance visual quality of generated images. The results suggest that hierarchical visual information in the brain can be effectively combined to reconstruct perceptual and subjective images.

(Time Series) Forecasting: Principles & Practice (in R)

(Time Series) Forecasting: Principles & Practice (in R)

I stumbled across this open access book by Rob Hyndman, the god of time series, and George Athanasopoulos, a colleague statistician / econometrician at Monash University in Melbourne Australia.

Hyndman and Athanasopoulos provide a comprehensive introduction to forecasting methods, accessible and relevant among others for business professionals without any formal training in the area. All R examples in the book assume work build on the fpp2 R package. fpp2 includes all datasets referred to in the book and depends on other R packages including forecast and ggplot2.

Some examples of the analyses you can expect to recreate, ignore the agricultural topic for now ; )

Monthly milk production per cow.
One of the example analysis you will recreate by following the book (Figure 3.3)

Forecasts of egg prices using a random walk with drift applied to the logged data.
You will be forecasting price data using different analyses and adjustments (Figure 3.4)

I highly recommend this book to any professionals or students looking to learn more about forecasting and time series modelling. There is also a DataCamp course based on this book. If you got value out of this free book, be sure to buy a hardcopy as well.

Generating Pusheen with AI

Generating Pusheen with AI

Zack Nado wrote the best machine learning application I’ve seen so far: a neural network architecture that generates new Pusheen pictures.

Image result for pusheen
This is an orginal Pusheen picture.

In his blog, Zack describes his generative adversarial network (GAN) , a special type of machine learning architecture where two neural networks try to fool each other. Zack first gave the discriminator network some real Pusheen images, so it gets an idea of what Pusheen looks like. Next, the generator network gets a bunch of random numbers so it can generate completely new (fake) images. These generated images are then fed back into the discriminator, so it knows what generated images look like. Zack repeated this process several hundred thousand times, so he obtained a generator network that’s great at making new Pusheen images which the discriminator (nearly) can’t dinstinguish from the original, real ones. Below is the learning process of the generator network visualized:

ezgif.com-video-to-gif
Samples output by the generator network. It learns distinctive features of “real” Pusheen (e.g., tail, eyes, ears) over time [original]


In the end, the generated images are very much like the real Pusheen. Zack added an interactive module (using Tensorflow.js) to the blog so you can generate some Pusheens yourself. (it didn’t work for me though…) On a final note, Zack wrote the orginal blog both in plain English, for non-experts, and in jargon, for the more experienced data scientists. I highly recommend you read either one of those versions!

Some of the Pusheen’s generated by Zack’s GAN [original]

Predicting Employee Turnover at SIOP 2018

The 2018 annual Society for Industrial and Organizational Psychology (SIOP) conference featured its first-ever machine learning competition. Teams competed for several months in predicting the enployee turnover (or churn) in a large US company. A more complete introduction as presented at the conference can be found here. All submissions had to be open source and the winning submissions have been posted in this GitHub repository. The winning teams consist of analysts working at WalMart, DDI, and HumRRO. They mostly built ensemble models, in Python and/or R, combining algorithms such as (light) gradient boosted trees, neural networks, and random forest analysis.

Open Source Visual Inspector for Neuroevolution (VINE)

Open Source Visual Inspector for Neuroevolution (VINE)

In optimizing their transportation services, Uber uses evolutionary strategies and genetic algorithms to train deep neural networks through reinforcement learning. A lot of difficult words in one sentence; you can imagine the complexity of the process.

Because it is particularly difficult to observe the underlying dynamics of this learning process in neural network optimization, Uber built VINE – a Visual Inspector for NeuroEvolution. VINE helps to discover how evolutionary strategies and genetic optimizing are performing under the hood. In a recent article, they demonstrate how VINE works on the Mujoco Humanoid Locomotion task.

[…] In the Humanoid Locomotion Task, each pseudo-offspring neural network controls the movement of a robot, and earns a score, called its fitness, based on how well it walks. [Evolutionary principles] construct the next parent by aggregating the parameters of pseudo-offspring based on these fitness scores […]. The cycle then repeats.

Uber, March 2018, link

VINE plots parent neural networks and their pseudo-offspring according to their performance. Users can then interact with these plots to:

  • visualize parents, top performance, and/or the entire pseudo-offspring cloud of any generation,
  • compare between and within generation performance,
  • and zoom in on any pseudo-offspring (points) in the plot to display performance information.

The GIFs below demonstrate what VINE is capable of displaying:

The evolution of performance over generations. The color changes in each generation. Within a generation, the color intensity of each pseudo-offspring is based on the percentile of its fitness score in that generation (aggregated into five bins). [original]
Vine allows user to deep dive into each single generation, comparing generations and each pseudo-offspring within them [original]
VINE can be found at this link. It is lightweight, portable, and implemented in Python.